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Abstract

The aging society puts an increasingly heavy demand on the health care system. Elderly
often have difficulties in mobility, reducing opportunities for exercise and social interaction
that activities like running errands or shopping normally offer.

This thesis proposes a novel concept for an assistive motorised shopping trolley, called Pull-
E. Based on interview results with elderly (n=40) the Pull-E should be able to carry heavy
loads (~20 kg) and still move easily and lightly while pulled over flat ground, curbs, and
even stairs; and should ideally also be able to move autonomously, without being pulled. It
should therefore have capabilities to balance itself, climb the stairs, carry items, and resist
perturbations.

First, a small proof-of-concept of the Pull-E was built, using tri-wheels which are separately
powered by motors, that allow assistive stair-climbing when the Pull-E is pulled horizontally.
In order to balance itself the tilt angle of the trolley needs to be measured. Therefore, the
Pull-E was equipped with a gyroscope and an accelerometer. From this prototype one of the
most challenging aspects emerged: stabilising the trolley.

The next step was to choose a suitable control system. Since humans can adapt to the
movement of other humans, climb the stairs, and resist perturbations of other humans, the
human inspired control theories have been investigated.

Based on the literature search the risk-aware control was the most promising one. In case
of risk-aware control a value function is provided to the system, by which it can avoid the
undesirable states. By using a value function it does not require the calculation of exact
trajectories and therefore, it becomes computationally more efficient, than the other human
inspired control methods. In addition it learns and adjusts its control parameters by which
it can adapt to different situations.

In order to test its efficacy, it was implemented and tested in a simulation of the Pull-E,
where a planar projection of the tri-wheeled actuated trolley was dynamically simulated.
Force inputs could act on the trolley by using the mouse, as well as pre-determined sinusoids
acting on its centre of mass. The simulation showed the risk-aware control method already
resulted in instabilities when no perturbations affected the system. So far, the risk-aware
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control method was tested only for zero order systems. Therefore an adaptation of the risk-
aware control method was made to allow the 2nd order system, by including angular velocities
in the state and modifying the value function. This control method is able to balance the
assistive trolley for forces that cause lower angular perturbations than 15 degrees.

In the future this control method needs to be improved to become more robust against
perturbation. The prototype needs to be rebuilt with stronger motors, and the control system
needs to be tested on the prototype. Finally, this prototype will be evaluated when human is
in the loop.

To conclude, Pull-E can facilitate elderly’s longer independence, but still a lot of work needs
to be done before it becomes a viable product.
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Chapter 1

Introduction

Elderly have to face several problems caused by (1) limited mobility, (2) memory loss, (3)
deteriorating health, and (4) loneliness [7]. Depending on the severity of their problems after
a given stage they have to move to a nursing home. Moving out of their own home to a
nursing home is truly unpleasant. In addition it is expensive by which the aging society puts
an increasingly heavy demand on the health care system. Therefore, the necessity of assisting
elderly with new technological devices has increased. From the perspective of elderly, assistive
robotic devices provide the opportunity to stay longer at home [7].

The �rst group of problems is due to (1) limited mobility. In this case the elderly person
can choose from several mobility assistive devices. The second group of problems, which is
caused by (2) memory loss, can be solved by safer homes and reminders. The third group of
problems is due to the (3) deterioration of health, which could be slowed down by exercising.
The easiest form of exercising is walking e.g. running errands. Lastly, the fourth group of
problems which is one of the most unpleasant problems the elderly faces is (4) loneliness. The
social contact with family members, the shop assistant or other customers can highly reduce
the level of (4) loneliness. The problems of elderly with their possible solutions are listed
below in table 1-1.

Table 1-1: Four groups of problems of elderly and solutions

Group Problem Solution
1 Limited mobility Mobility aids
2 Memory loss Safer homes, reminders
3 Deteriorating health Exercising, walking
4 Loneliness Socialization

The currently available devices mainly focus on the �rst two groups of problems and therefore,
the aim was to provide a solution for the third and fourth problem.
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2 Introduction

As previously mentioned, running errands provides the opportunity of (3) exercising and the
social contact with the shop assistants reduces the level of (4) loneliness. Therefore, the aim
is to design a device, which can facilitate walking and socialization.

The �rst step in designing such a device was to understand what are the di�culties the elderly
is facing, and what is the real reason for elderly people to run fewer errands as they are getting
older. To �nd the reason for this phenomenon multiple senior people have been interviewed.
(The interview questionnaire is provided in the appendix A.)

The results learned that the majority of the elderly people do their shopping twice a week, at
the same time each week and that is the time when they meet their friends. Therefore, when
they decrease the frequency of going to the stores they decrease the frequency of meeting
their friends, and they will become more lonely. In addition, from the questionnaire it turned
out that most of the elderly like to walk, although when carrying groceries they need to stop
multiple times to take a rest before getting home. If they would not need to pull the trolley
they would not need to stop to have a rest. Above all, pulling the trolley up the stairs is
highly demanding for them. In some cases, they are not able to pull it up the stairs and they
have to wait hours until someone helps them, which can be truly frustrating. This is a big
problem which needs to be solved.

To conclude, there is a high need for an assistive shopping trolley which can move without
being pulled and is able to climb the stairs.

1-1 Currently available mobility assistive devices

In the following section, several assistive mobility devices available for the elderly are going to
be analyzed. They are going to be analyzed according to the criteria, whether they are able
to climb the stairs while carrying packages. These devices are the canes, crutches, walkers,
wheelchairs, and mobility scooters also shown in the �gure 1-2.

1. Canes
Canes, or walking sticks are used to increase stability. The user can choose between a
simple cane or a multi-feet cane. Multi-feet walking sticks provide even greater support.
There are robotic walking sticks as well, such as SmartCane [8], which supports the user
while avoiding obstacles or the PAMM ( Personal Aid for Mobility and Monitoring)
which assists the user and monitors the user's vital signs [9]. Walking sticks can help
in climbing stairs, although carrying bags is complicated.

2. Crutches
The crutches, in contrast to the walking sticks, provide direct body support. Unfortu-
nately, they are not so popular because they cause unnatural gait. Carrying bags while
climbing stairs with crutches is really complicated, just as with canes.

3. Walkers
The walkers are pushed by the user and give a support during walk using the patient's
own remaining locomotion capability. Walkers can increase the con�dence and the
sense of safety, by which the user's level of activity increases [10]. Robotic walkers are
available as well e.g. LEA, which in addition to helping with walking, reminds people
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