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Abstract

This report constitutes the final product of my internship, where research was conducted on the differences of
the Bluetooth Low Energy signal reception between 2 different phones (p1, p2) and eventually, the possibility
of developing a translation function that could be used to predict the signal strength reception of p1, by
considering the signal strength reception of p2. Such model would be particularly useful to applications
related to Indoor Localization/Positioning, as these are often based on the BLE signal strength.

For the development of this model, the influence of several parameters was assessed, such as: a) the distance
between a phone and a beacon, b) their orientations and c) the number of concurrently broadcasting bea-
cons, and all were found to be significant. Furthermore, it was discovered that as long as there is no movement
in the system, the BLE signal reception at a specific channel has low variations and so, even a few samples
can be representative for each channel.

The evaluation of the translation functions was quite promising. Ultimately, by taking advantage of a specific
Android’s behavior during the training phase, it became possible to identify the channels of incoming BLE
signals. This information was then used to significantly enhance the performance of the translations under
specific circumstances (i.e. the channels can be identified during the operational phase too).
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1
Introduction

1.1. Company’s operation description

Crownstone is a new (founded in 2016) start-up company, the head office of which is located in Rotterdam.
It is powered by Almende Investments (http://almende-investments.com/), an independent research
and investment company that conducts since 2000, research and development activities in several ICT do-
mains, ranging from healthcare to manufacturing systems. At the same time, Crownstone is also supported
by DoBots, a company specializing in robotics-orientated software that offers solutions for Smart-Buildings
and Smart-Robots (https://dobots.nl/).

Crownstone offers its expertise in the field of IoT and Indoor Localization via their specially designed mod-
ules (the crownstones), that can monitor and control the power supply of devices connected to them, based
on user’s proximity and/or automated or on-demand calls. These modules operate normally as nodes in a
network and their coordinated functionality allows for numerous Indoor Localization applications. For ex-
ample, one could easily ensure that a specific device will not be left turned on or on stand-by, when not being
present.

The company has a long-established tradition of getting involved in research (especially thanks to DoBots
and Almende), with many interesting topics related to the undertaken one, having emerged. Some recent
examples are:

• Indoor Localization and Fingerprinting across Multiple Smartphones [1]

• Indoor localization using BLE - Using Bluetooth Low Energy for room-level localization [2]

• Human SLAM - Simultaneous Localisation and Configuration (SLAC) of indoor Wireless Sensor Net-
works and theirs users [3]

1.2. Project description

Crownstone’s Indoor Localization service is fundamentally based on the Bluetooth Low Energy (BLE) Tech-
nology. More specifically, when a set of crownstone modules, broadcasting BLE signals, is deployed in space
(forming a mesh), a radio distribution occurs within that space. Crownstone binds each location to the cor-
responding signal signature at that location (during a fingerprinting training phase), creating a reference
database which enables the localization through a reverse lookup - from signal signature to location. A smart-
phone is typically the device used to scan all these signals and process them, delivering ultimately an estima-
tion for current location.

Unfortunately, the above summarization only reveals half the story. The other half lies in the complexity of
receiving a consistent signal signature at a given position (also evident during the experimental phase from
Haagmans (2017) [4]), consequently affecting the accuracy of the positioning estimation. There is a vast
number of random parameters affecting the signal propagation and its final form by the time it reaches the
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2 1. Introduction

phone’s Bluetooth antenna. To begin with, BLE operates in the 2.4 GHz ISM band, where the signal is re-
spectively subject to various reflective and absorbing obstructions. These are caused by different types of
barriers, the interference potential of which may be less (e.g. wood), or higher (e.g. metal), with the human
body (being made up of mostly water) lying somewhere in the middle. For example, one can expect signif-
icant signal fluctuations in a building crowded with people moving around. Moreover, the same 2.4 GHz
frequency is also being used by many other radio devices intended for industrial, scientific, or medical (ISM)
requirements. From Wi-Fi routers and microwave ovens, to fluorescent lighting in offices, all can potentially
become sources of interference.

However, even if all environmental factors could be eliminated from the equation, different Bluetooth-enabled
phones (having different hardware/firmware) would still “react” to an incoming BLE signal, in a different way.
Undoubtedly, trying to match a new-read signal signature at a given position with one inside the reference
database, would require that between the training and operational moment, all parameters above are as sim-
ilar as possible. Otherwise, an analogous uncertainty would be introduced to the positioning estimation. For
that reason, Indoor Positioning services often require that, at least, the same device is used during both the
training and the operational phase; and this is also the case for Crownstone. Therefore, the leading object of
this research internship is to approach a solution for that problem. Namely, the necessity of using the same
devices among these two phases, to be able to achieve accurate positioning estimations. This suggests the
development of a model that could support “translations” between signal readings from different devices.

Ideally, the following basic scenario should be feasible: A smartphone could be used to initially train the
reference database, while scanning under specific known conditions (e.g. phone model, device placement,
etc). At a later moment (operational phase) and under different known conditions, another smartphone
should be able to utilize the initially trained database, to produce an accurate-enough positioning estimation.

To assess the degree to which the above scenario could be accomplished, several research questions need to
be addressed. These include:

• How should the research methodology be defined? Aspects to consider are the data collection, their
analysis and the selection of a proper statistical model.

• Which parameters should optimally (having good “value-complexity” ratio) be considered and how?

• Is it possible to develop a model that could support "translations" between signal readings?

• Which measure of performance should be used to evaluate these signal translations?
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As mentioned, the general objective is to see whether there are phones of different BLE reception trends,
such that this difference could be modelled and generally used to translate a received signal from one phone
to the other. For that reason, trying to accurately capture this difference is crucial for the performance of the
translations. There are factors, however, such as Transmitter-Receiver distance and their orientations, the
unpredictableness of which might introduce ambiguity while searching for these differences. For example,
would it be sufficient to only place the phones and beacons at a single orientation while gathering the data?
Or will this produce biased conclusions? Therefore, it makes sense to start determining the proper method-
ology and thus, answering the 1st research question, by researching how these could affect the RSSI. Since
in a real case scenario, the beacon-phone distance and especially their orientations are unknown, it would
eventually be practical if a translation could be achieved without being actually aware of them.

2.1. Assessing the influence of phone’s orientation

The first phase is to check whether (and how) the phone’s orientations could affect the differences in RSSI
between 2 phones. For example, for a specific distance, if the difference in the RSSI distributions between 2
phones did not remain the same while changing their orientations in the same way, it means that the phone’s
orientation (as a factor) plays a significant role. Contrariwise, if the differences remained the same, then this
would be an indication that the orientations do not affect the RSSI distributions as much as other factors.

To investigate this, 2 mount-stands were built. One to place a specific beacon (B1) and another one to place
each phone during the RSSI gathering. These mounts were then placed in a fixed (2m) distance in the middle
of an open field (Figure 2.1) with closest (out-of-system) reflecting surface being further than 40 meters. It
should be noticed that B1 was broadcasting every 100ms at a specific Tx Power, which has been measured
that can effectively send a signal to a maximum distance of 50 meters. During the whole process, the beacon
remained fixed and the only changing parameter was the orientation of the phone that was being mounted.
In total, 4 different phones were sequentially used for fast (of low latency) data gathering and, on each case,
all other Radio adapters were disabled. The orientation placements that were tested are shown in Figure 2.2
and on each case, the phone was remotely (the user was leaving first) gathering RSS values for 90 seconds.

During the data gathering and analysis, several interesting facts became evident. To begin with, the following
was observed. Normally, when Android devices are listening for BLE signals, they are switching (cycling)
between the 3 BLE Advertisement channels (37-38-39 of Figure 2.3) very fast (≈2 rotations per second). In this
specific case, however, whenever the signal was found in the beginning of the scanning to be stable enough
(i.e. there was no significant movement in the system) and also the WiFi adapter was disabled, then the device
was listening on a specific channel for 5 seconds and then it changed to the next one for another 5s and so on
(i.e. 1 rotation every 15 seconds). For that reason and to avoid being biased towards a specific channel, the
data that were further used in the analysis were clipped based on a scan duration that is a multiple of 15. As
such, the first 60 seconds were considered on every different orientation scan.
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Figure 2.1: Sampling Field

Figure 2.2: Orientations being tested (ZXY Angles in degrees)

Figure 2.3: The 3 BLE Advertisement Channels in 2.4GHz Band

Furthermore, it was noticed that almost on every orientation placement, the RSSI at each distinct channel was
softly variating around a specific dBm level. Due to this fact, a kernel density estimation (a mixture of several
Gaussian distributions instead of a single one) was used to estimate more accurately the probability density
function (PDF) of the RSSI. This can be seen in the following group of graphs (Figure 2.4 - Figure 2.8) that show
a sequence of 45-degrees rotation on the Y axis graphs. For example, in the 1st case (phone’s rotation 90-0-0),
the 3 black arrows show (for the Sony Xperia Z2) the 3 main dBm levels for the 3 corresponding channels.
These graphs (top right plots) also illustrate clearly the 15 second periodic channel shift.
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Figure 2.4: RSSI analysis (Phone’s Orientation ZXY: 90-0-0)

Figure 2.5: RSSI analysis (Phone’s Orientation ZXY: 90-0-45)

Figure 2.6: RSSI analysis (Phone’s Orientation ZXY: 90-0-90)
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Figure 2.7: RSSI analysis (Phone’s Orientation ZXY: 90-0-135)

Figure 2.8: RSSI analysis (Phone’s Orientation ZXY: 90-0-180)

Using a Channel-Reference technique that will be described in section 2.4, it was found that (for each phone)
the relationships between the 3 main dBm levels were changing as soon as the orientation was changing
(i.e. at some orientations, a specific channel was delivering the strongest signal and at other orientations the
same channel was delivering the weakest). That, along with the fact that Androids do not reveal the channel
of a single RSSI, might be a good reasoning why the RSSI records should better be considered combined and
possibly as a single Gaussian distribution (to minimize this way, the computational complexity).

Proceeding with the examination of the differences between the RSSI distributions, across different phone’s-
orientations, the above graphs show that, indeed, between 2 phones, the orientation plays a significant role.
For example, although the Sony Xperia seems to have often the strongest signal, in the 3rd case (90-0-90),
its reception was similar to the Galaxy S7 devices. Conclusively, by examining also the rest of the orientation
cases of Figure 2.2, it became clear that the RSSI distributions were so sensitive (and "random") to phone’s
orientation changes, that checking only a single phone’s-orientation placement has to be avoided (in order
not to become biased) and instead, consider many orientations during a single scan (leading inevitably to
even wider RSSI distributions).
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However, which exactly should these orientations be, since most of them (i.e. their RSSI distributions) differ
significantly from the rest ones. Without doubt, in a real case scenario, the orientation of a phone (in respect
to the beacon’s position) would be very difficult to predict. As such, gathering RSS data from as many phone
orientations as possible would be the way to go, while at the same time, this should be done uniformly (un-
biased towards specific orientations). This, led to purchasing the mechanical (to avoid any electro-magnetic
interference coming from the motor) 360° in 1 hour rotating mount of Figure 2.9, which offers one com-
plete linear-rotation on a single axis. Ideally, maybe, a 3-axis gimbal mount (similar to the one showed in
Figure 2.10) should be used during a 360°x360°x360° Scan, however such equipment is not easily available.

Figure 2.9: 360° mechanically rotating
mount for the phones

Figure 2.10: An even better (probably)
concept for a mount

2.2. Assessing the influence of beacon’s orientation and uniqueness

The analysis above considered the phone’s orientation in respect to the beacon. However, the possibility that
the beacon’s orientation in respect to the phone’s position could also affect the difference (among phones)
in (their) RSSI distributions, was evident. Therefore, the same experiment as above was repeated (namely
the: Duration: 60sec, Distance: fixed, Tx Power: Fixed, Broadcast Interval: Fixed, Beacon’s Orientation: fixed,
Phone’s Orientation: alternating), but at a reversed form (i.e. Duration: 60sec, Distance: fixed, Tx Power:
Fixed, Broadcast Interval: Fixed, Beacon’s Orientation: alternating, Phone’s Orientation: fixed). Examining
this factor was important, because if results would show that the beacon’s orientation does affect the RSSI
distribution differences, then the same approach as in the case of the phone’s orientation should be used for
the beacons too (i.e. sampling from different beacon’s orientations too). The orientations that were put to
the test are the ones being shown in Figure 2.11. Additionally, it is worth mentioning that in each case, the
readings across all channels were combined into a single Gaussian distribution to make comparisons simpler.

Figure 2.11: Beacon orientations that were tested

The aforementioned experiment was repeated 2 times, for 3 different beacons of same model (i.e. 2x3 = 6
times). This alternation was used to reject (or not) the null hypothesis that different beacons of same exact
model, orientation and hardware/software configurations, do not lead to different RSSI distributions on a
specific Phone. This was also important because, eventually, multiple concurrent beacons were intended to
be used, to simultaneously log multiple emitted signals (and thus, fasten the whole process). If, however, this
experiment rejected the null hypothesis, it would mean that different beacons (of same type) broadcast in a
different way, which suggests that the use of multiple beacons should be avoided.
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The results of this twofold experiment gave early answers to both research questions above. First of all, simi-
larly to the phone’s orientation case, the beacon’s orientation has also great impact on the differences between
the RSSI of two different phones. For example, just by rotating for a few degrees the beacon, a phone that had
stronger signal (compared to another phone), could now easily have weaker signal. This becomes clear by
examining the relationship shift between the Sony Xperia (brown distribution) and LG G3 (blue distribution)
in Figure 2.12, after rotating the beacon for 90 degrees.

Figure 2.12: Comparing the signal of three different Beacons, while having 2 different orientations

Similarly to the 1st experiment (influence of phone’s orientation), these new results also suggest that record-
ing only the emitted signal from a single beacon orientation, is not enough. Ideally, another 3-axis gimbal
mount mechanism should be used for the beacon too. This, however, leads to a great number of rotational
combinations between the phone and the beacon and thus, much time needed for the data gathering. For
example, if each angle step (i.e. the rotational accuracy) was 10 degrees, then the total rotational combina-
tions to check would be: 36°x36°x36° phone rotations x 36°x36°x36° beacon rotations, equalling to more than
2 billions rotations (although, by considering only the front hemisphere of the beacon, as the back one is al-
ways attached to a surface and never visible, would lower that number). For that reason, having considered
the corresponding "value-complexity" ratio (subject of the 2nd research question), the only sensible option
was to use at the same time, many beacons placed at various random orientations.
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The same figure also reveals another finding, regarding the influence of beacon’s uniqueness. It is clear that
all three beacons (having distinct MAC addresses) had both times (orientation cases) very similar broadcast
footprints, which means that each beacon of the same model behaves the same. Finally, as already men-
tioned, the experiment was repeated twice (straight line with ID Scan:4 and dashed line with ID Scan:5) to
ensure that the results were consistent. A consistency that is again evident in the same figure.

2.3. Examining the effects of a non-uniform (orientation-wise) sampling
As it has been shown, the various phone’s/beacon’s orientations can easily influence the BLE RSSI differ-
ences between 2 phones. However, to get a deeper understanding on the possible effects of a non-uniform
(orientation-wise) sampling, when trying to develop an accurate RSSI translation model between 2 phones,
the following experiment was performed: The 360°/hour mechanical rotator shown in Figure 2.9 was placed
on a vertical mount. All around it (forming a circle), 20 beacons were placed on their own vertical mounts,
at an incremental distance starting from 0.5m to 10m (i.e. incremental step of 0.5m). All beacons had the
same exact orientation in respect to the phone mount, for their broadcasting to be comparable. Two phones
were then sequentially placed on the centered mount, each, at 3 different orientations (Horizontal, Vertical,
Flat). In total, this setup produced 120 sets of 1-hour scan readings (2 phones x 3 orientations x 20 beacons).
Finally, a Gaussian distribution was fitted to each set and the combined results are presented in Figure 2.13.

Figure 2.13: Comparing the RSSI difference (based on distance), between 2 phones

The above plots show the RSSI differences of two phones (LG G3 - Samsung Galaxy S7) based on their dis-
tances to the BLE source. As already noticed, in practice, it is not possible to know this parameter during the
operation mode, which adds a level obscurity to the readings. However, having considered now the distance
parameter too, provides us with an extra level of information (the trend based on distance) and thus, makes
it easier for us to intuitively understand the effects of a non-uniform (orientation-wise) sampling.

More specifically, assuming that the mount was slightly turning every 1 second, then within a 360°/hour
rotation, approximately 3600 (60 seconds x 60 minutes) different angles were sampled, which indeed sounds
a lot and thus, possibly sufficient. However, this motion still corresponds to only 1 degree of freedom (Yaw),
without considering the other 2 (Pitch & Roll). As mentioned, this scanning process was executed 3 times
(Horizontal, Vertical and Flat placement of the phone) and these 3 cases were compared in Figure 2.13. One
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might expect that in all 3 cases the trends would be similar (consistent), however, this is not the case. At the
Horizontal and Vertical placements, the differences remain more or less the same as distance increases, but at
the Vertical placement, the differences seem to increase. Hence, if the Vertical placement hadn’t been checked
at all, this (valuable to the translation model) information would be missing, producing less accurate results.
Equivalently, it is yet unknown what other "valuable" information we are missing, having only checked 3
placements. Moreover, this problem also illustrates the great difficulty in developing and utilizing an accurate
Signal Strength to Distance model, such as the well-known Log-Distance Path Loss model [5].

The importance of considering not only the two orientation parameters (beacon’s & phone’s), but also the
parameter of distance (as we saw from the left graph, it contains valuable information on the RSSI differences
between phones), is evident. In section 2.2, it was concluded that many beacons should be used for parallel
logging. However, since the parameter of distance has also been introduced, these should ideally be placed at
various distances from the recording phones. Moreover, due to the logarithmic change of the signal strength
as distance increases (which can also be seen in Figure 2.13), their placement should also favor the short dis-
tances. That, in order to have balanced RSSI samples (i.e. about the same number of weak and strong signals)
available, for the development of the translation model. These conclusions form an educated response to the
2nd research question.

2.4. Estimating the ideal scanning duration

In the group of graphs Figure 2.4 - Figure 2.8 it was shown that during a scan, the readings at a specific channel
did not have significant variations. This, suggested that collecting data for too long would not add much
information to the corresponding distribution and so, the ideal scanning duration had to be determined.
This, would ultimately decrease the total time needed for the future scanning processes.

However, such task also required knowing the exact channel at which each signal was detected, which is
something that Android’s API do not provide yet. Instead, 3 BLE development kits from NORDIC (Figure 2.14)
were utilized as Channel-References, each programmed to broadcast on a specific only channel. Then, by
exploiting the discovered fact that Androids were continuously scanning for 5 seconds at each channel, it be-
came possible to identify which channel that was, because within the same time-span, only a single Channel-
Reference had also been detected.

Figure 2.14: nRF52 Development Kit from NORDIC SEMICONDUCTOR

To eventually calculate the ideal scanning duration, the following procedure was implemented. In 2 different
indoor environments (IE1, IE2), 20 beacons were (in each IE case) placed at random positions and at random
orientations. Additionally, the 3 BLE Channel-References were also placed in the middle of each area. Then, 4
random positions were chosen (again in each IE case) to sequentially place 4 Android devices (i.e. each phone
device was placed once on each one of the 4 positions). All phones that were placed at a specific position,
shared the same exact orientation, which was different at each position. In the end, 1920 scans were collected
(i.e. 2 Areas x 4 Positions x 4 Phones x 20 Beacons x 3 Channels), each containing 25 minutes of RSSI records
(corresponding in total to 800 hours of RSSI records). It should also be noted that during each scanning, there
was no movement within the environment.
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The collected data were processed to develop a sampling minimization function, which could be advised
for finding an efficient and effective scanning duration. More specifically, the following data processing was
applied: At first, the 1920 scans (having 25-minutes duration each) were checked in terms of their sample
size (RSSI records) and this information was plotted along with the underlying Gaussian distributions (some
results can be seen in Figure 2.15). It was noticed that no phone had detected the 3 channels of a single bea-
con, the same amount of times (the 3 numbers at each top right legend), while additionally, no channel was
observed to be in general the dominant one. At some degree, this variation might be expected because of sev-
eral reasons. First of all, a specific channel could possibly be received as "bad", as the phone’s threshold-line
between detecting/not detecting a weak signal. Also, the transmitting/receiving intervals of the 2 devices are
neither perfect nor synced (on the phone side, they are even depended on the available CPU sources). How-
ever, in a few cases this phenomenon was more excessive (red underlines showing the number of samples of
the least detected channel), or even extreme (green circle).

Figure 2.15: LG G3 RSSI records at channel level, from 2 (out of 20) different beacons.
The 4 plot columns correspond to the 4 different positions used.

Next, it was calculated that in ≈95% of the cases, there were at least 2300 samples available. Observing that
(on average) it was taking 165ms for the next RSSI to be received during a low latency scanning, it can be
deduced that the 2300 samples correspond to ≈19 minutes of recording (2300 samples x 165ms x 3 channels).
Then, the mean (µc) of the underlying Gaussian distribution of each one of the cases that had at least 2300
samples (1804 out of 1920 scans), was considered as a reference point for the following Monte Carlo method:

• Create an empty vector-list (a list of eventually 1804 vectors, each one of which containing 50 means)
• For each scan-case set (1804 in total)

– Create an empty mean-list
– For each sample-size in the sequence: 500 to 10 with step -10 (i.e. 500, 490, 480, .., 10)

¦ Create an empty diff-list
¦ Repeat 10000 times

· Randomly select sample-size number of samples from the scan-case set
· Calculate the new-mean of the above subset
· Calculate the absolute difference between the new-mean and the corresponding µc

· Add the above difference to the diff-list
¦ Calculate the mean of the diff-list (at this point, its size will be 10000)
¦ Add the mean to the mean-list

– Add the mean-list (at this point, its size will be 50: the number of steps) as a vector to the vector-list
• Average all vectors within the vector-list (a final vector containing 50 mean averages will be produced)

The above algorithm produced the function presented in Figure 2.16. This function shows the relationship
between the size of a sub-sample set (of a single channel) and the absolute RSSI difference (i.e. accuracy)
between the mean of this sub-sample set and the mean of the entire sample set ("ground truth"). The figure
makes it clear that for as long as there is no movement in the system, the signal reception is very stable. More
specifically, the average of even just 10 samples has less than 0.25dBm difference with the average of more
than 2300 samples.
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Nevertheless, the ideal accuracy/samples ratio, seems to be at around 125 samples, where the curvature
change decreases. This sample size corresponds to about 20 seconds of scanning on a specific channel. How-
ever, as phones do not scan only on 1 channel, this duration needs to be multiplied by 3 (i.e. 1 minute).

Figure 2.16: Minimization function for the samples

2.5. Assessing the impact of multiple beacon transmissions
In the previous section, it was concluded that 1 minute of scanning offers a good "accuracy/samples" per-
formance, which corresponded to 125 samples per channel. However, as many beacons were about to be
simultaneously utilized, it was meaningful to test whether an increased number of beacons could possibly
influence the number of RSSI records on a phone. To research that, the following experiment was repeated
twice (to confirm consistency) and for 3 phone devices: A device (along with the 3 Channel-References next
to it) was placed in a room to do 2 scans, lasting 1 minute each. During the 1st scan, 60 beacons were placed
around it, while during the 2nd scan, only 3. The results showed that, indeed, by increasing the number of
beacons, they get detected less times. For example, Figure 2.17 shows the results for LG G3, where the left
group (1st scan) contains considerably less RSSI detections (samples), when comparing to the right group
(2nd scan). A phenomenon that could possibly be depended by the computational power of the device, or
even the saturation of the antenna. Accordingly, this was taken into consideration for all future scans.

Figure 2.17: Impact of multiple beacon transmissions to the detection response.
(Total transmitting beacons at Left Group: 60 beacons vs Right Group: 3)



3
Resulting translation model

and its evaluation

Having defined the data collection methodology, the next step was to finally gather the data needed for the
development of the translation function between the phones. Namely, the Sony Xperia (which was found to
be the strongest in the the group of graphs Figure 2.4 - Figure 2.8), the LG G3 and the Samsung S7. With that
said, in an open area, 60 beacons were placed, forming a circle, at random orientations and positions. In the
center, along with the 3 Reference-Channels, the 3 phones were sequentially placed to scan at 32 uniformly
fixed orientations, for 100 seconds each. This was repeated 3 times in total and each time, the 60 beacons
were randomly repositioned (to increase the orientations variety). A procedure that practically took more
than 8 hours to finish.

To convert the data into a translation function, the first step was to merge per BLE channel (3 Ch), per beacon
(60 Bcn) and per random re-positioning (3 Pos) (i.e. 540 «Ch-Bcn-Pos» total combinations), the RSSI records
from all 32 discrete phone orientations, into a single one. Their fusion offers at some degree an averaged
(and less biased) RSSI, which is a) closer to the average of all possible (continuous) orientations and b) away
from outliers. After that, each «Ch-Bcn-Pos» case from a phone was compared with the same «Ch-Bcn-Pos»
case from another phone. This revealed indeed some underlying RSSI differences between phones, based on
which, the development of a translation function could become possible.

More specifically, it was noticed that the biggest difference existed between the Sony Xperia Z2 and the LG
G3 S and so, this pair became the subject of the translation model. Their differences are presented in the
following 2 groups of plots (GP1, GP2) (Figure 3.1 & Figure 3.2), where GP1 shows the differences from phone
A to phone B, and GP2 shows the differences from phone B to phone A. In each group of plots, the first two
scatter plots (pA, pB) show the same RSSI-pairs distribution. Their difference is that the second scatter plot
(pB) includes the information of the specific channel. Last, the third scatter plot (pC) shows the differences
from phone A to phone B. As expected, between GP1 and GP2, the first 2 scatter plots are basically reversed.
However, this is not the case of pC too, due to the calculation of their differences.

After plotting the RSSI pairs, the first thing that became evident was the great importance of the channel (i.e.
the frequency) when examining the difference in the signal receptions of the two phones. For example, in
pC of GP1, it is clear that the signals coming on channel 39 are generally received better by LG G3 S (when
compared to the Sony Xperia Z2). Contrariwise, the Sony generally receives better the other 2 channels.

The last part of the first research question had to do with the selection of a proper statistical model, based on
which, the translations would be performed. For that, different functions were used to check how well they
describe the RSSI relationships and the best performance was proved to be a simple linear regression (least-
squares of vertical offsets [6]). This performance check was done in terms of complexity and coefficient of
determination (R2), which is the proportion of the variance in the response variable that is explained by its
(linear) relationship with the explanatory variable [7]. The produced functions are presented in Figure 3.1
& Figure 3.2. In both cases, the pB plots include 3 functions (1 per channel), whereas in the pA plots, the
channel is considered unknown, and so, a (single) less descriptive translation function has been produced.
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14 3. Resulting translation model and its evaluation

Figure 3.1: RSSI Difference from Sony Xperia Z2 to LG G3 S [GP1: Training Phase]

Figure 3.2: RSSI Difference from LG G3 S to Sony Xperia Z2 [GP2: Training Phase]

As already mentioned, between GP1 and GP2, the data of pA and pB are reversed. However, their corre-
sponding functions are not also reversed (all of them have positive slopes). For that to happen, instead of a
«least-squares of vertical offsets» approach, a «least-squares of perpendicular offsets» approach should have
been followed (also known as Deming regression [8]). However, this model was outperformed during the
evaluation phase by the currently chosen one, and so, it was rejected.

So far, only the pair having the most significant RSSI difference was discussed. However, it would be mean-
ingful to also provide an example of phones with small RSSI differences and such example is the one showed
in Figure 3.3, between the LG G3 S and the Samsung Galaxy S7. It is clear that the calculated functions (even
at channel level) are highly coinciding with the y=x slope, which means that their receptions are very similar.

Figure 3.3: RSSI Difference from LG G3 S to Samsung Galaxy S7 [GP3: Training Phase]
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The next step was to see whether a similar RSSI difference between the Sony Xperia Z2 and the LG G3 S (to
the one found in Figure 3.1), could also be found in other case scenarios. If so, then, by utilizing the produced
translation function and the readings from only 1 phone, it would in theory be possible to predict, with some
accuracy, the RSSI readings of the other phone. Ultimately, if this accuracy was higher than the accuracy we
would have if no translation was done, then the 3rd research question would have an affirmative response.

To test that, two new RSSI samplings were performed in a big indoor environment using the two selected
phones. In both cases, 60 beacons were randomly scattered throughout the area (at random orientations),
with the 3 Channel-References being additionally placed in the center. In the 1st case, each phone was con-
secutively used at 3 specific positions to record RSSI data under 6 different orientations. This smaller amount
of orientations (compared to the 32 ones that were considered for the model training) was used to check
whether these differences of interest could even be found during a less analytic sampling. Going one step
further with this check, during the second sampling, an even more abstracted (and possibly error-prone) sce-
nario was considered. Instead of placing the phones at fixed positions, a user, holding each device on one
hand, walked for 1 minute a specific path. This process was repeated 10 times and each time, the 2 phones
were swapping hands. In the 1st case, the 6 different orientations were combined in the same way as in the
processing of the training data. However, in the 2nd case, there was no merging to be done, as the user intro-
duced a serious distance and orientation averaging by walking around during a single path. On the evaluation
data above, the same linear regression analysis (as the one used to train the translation functions) was applied
and the results are presented below (Figure 3.4 & Figure 3.5).

Figure 3.4: RSSI Difference from Sony Xperia Z2 to LG G3 S [GP4: 1st Evaluation]

Figure 3.5: RSSI Difference from Sony Xperia Z2 to LG G3 S [GP5: 2nd Evaluation]

The translation functions shown in these plots are very similar to the ones shown in GP1 and GP2, which is
quite promising for the trained model. Nevertheless, the pA plot of GP5, where the 3 channels are not con-
sidered separately (but rather as a single set of measurements), does not include a function. That, because a
minimum coefficient of determination of 0.95 (which has been generally set as a threshold) was not achieved.
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The objective of the last research question was the selection of a proper measure to quantify the performance
of the produced model. Regarding that, 3 measures of performance became the leading candidates. Namely,
the Mean squared error (MSE), the Mean Absolute Error (MAE) and the Root Mean Squared error (RMSE) (Ta-
ble 3.1), each offering some advantages over the other. For example, the RMSE has generally the benefit of
penalizing more the larger errors (residuals). However, in this case, such weighting wouldn’t introduce better
interpretation to the evaluation. Instead, a measure that could weight (penalize) more the errors at strong
signals (having high dBm), would probably be the ideal case. That, due to the logarithmic nature of the signal
propagation and thus, the importance of not "missing" the strong signals (especially if Trilateration is used
for the localization algorithm). Such specialized measure, however, was not found (and probably hasn’t even
been developed yet) and thus the MAE was eventually selected, to take advantage of its easy and straightfor-
ward interpretation [9].

Table 3.1: Measures of performance

Mean absolute error MAE=
1

n

n∑
t=1

|et |

Mean squared error MSE=
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Root mean squared error RMSE=

√
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n
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The following table presents for each evaluation test (Eval_A, Eval_B), the Mean Absolute Errors of the (esti-
mated) RSSI values of the LG G3 S, which were predicted by using the (real) RSSI values of the Sony Xperia Z2
and the translation models that were presented in (pA and pB of GP1). The model of pA is evaluated within
the "All Channels Combined" column, while the 3 models (1 for each channel) of pB are evaluated within
the remaining (green) columns. After translating the signals, the resulting RSSI accuracy ("With Translation"
entries) is compared with the accuracy that we would have if no translation was done and so, the RSSI values
of the Sony Xperia Z2 were used ("Without Translation" entries).

All Channels

Combined
Ch 37 Ch 38 Ch 39

Without Translation 2.52 2.05 2.25 3.26
Eval_A

With Translation 2.2 1.54 1.34 1.3 Channel Average: 1.4

Without Translation 1.73 2.38 0.9 1.92
Eval_B

With Translation 1.82 1.46 1.19 1.77 Channel Average: 1.47

Table 3.2: Evaluation results for predicting the signal of the LG G3 S (Mean absolute errors of RSSI)

The above results show that in the first evaluation case, the translation model always predicted RSSI values
that were more accurate, when comparing to not having translated the signal at all. More specifically, without
knowing the channels, the model improved the signal by 0.32dBm. However, as soon as the channels were
known, the average RSSI improvement became 1.12dBm (2.52dBm - 1.4dBm). In the second evaluation case,
where the distance to each beacon and the orientations were significantly mixed (and averaged), the model
only improved the signal in the case where the channels were known (by 0.26dBm). In the other case, the
accuracy of signal was decreased by 0.09dBm (1.73dBm - 1.82dBm).



4
Conclusions & Recommendations

In the beginning of this project, several research questions were formulated. Their response was considered
fundamental for eventually reaching the final goal. Namely, to assess the degree to which, a model could
be developed that would support correcting BLE RSSI translations between 2 phones, leading to more accu-
rate comparisons between them. Each research question has been already extensively discussed and several
conclusions have been reached.

First of all, due to different hardware & firmware specifications, every phone receives the 3 BLE channel sig-
nals, differently. This difference, however, is also far from stable. It varies unpredictably among all possible
orientation combinations, between the phone and the beacon. In addition to that, another parameter that
significantly affects the BLE RSSI differences across 2 phones, is the distance between the device and the
beacon. As such, to acquire a representative estimation, many diversified orientations and distances have
to be considered. A process that is definitely time-demanding. However, it was also discovered that for as
long as there was no movement within the system, the received signal on each distinct channel was quite
stable. Therefore, just a few samples per channel were sufficient each time (which helped accelerating the
whole data gathering process), to receive an accurate signal representation. It is also worth mentioning, that
although Androids do not state the BLE channel on which a signal has been received, yet, by taking advan-
tage of a specific Android’s scanning behavior, it became possible to identify the channels of incoming BLE
signals. Another observation that has been made, is that, by increasing the number of transmitting beacons
(and consequently, the number of BLE signals reaching the phones), each distinct beacon was detected less
frequently. A phenomenon having probably to do with the available computational sources.

All the aforementioned research led eventually to the development of the aimed translation functions. Several
prediction models were tested to see how well they describe the RSSI relationships, but the best performance
(in terms of complexity and coefficient of determination) was proved to be a linear regression that minimized
the vertical offsets. During the data processing, the LG G3 and the Sony Xperia Z2 were observed having the
biggest RSSI difference. For that reason, the evaluation of these functions was done by comparing the RSSI
accuracy between a) the predicted BLE signal of the LG G3 (based on the signal from the Sony Xperia Z2)
and b) the signal from the Sony Xperia Z2. This comparison was used because during Indoor Positioning
applications, the phones are considered to have the same BLE reception properties. Something that has been
disproved as the evaluation results showed that, almost every time, the translation model introduced some
improvement to the accuracy of the signal and especially when the channels were known.

So far, no BLE signal translations have been practically implemented in Indoor Positioning applications.
However, since it is indeed possible to develop a model that could support beneficial translations between
BLE signals from different phones, it might be a good idea for companies offering such services, to do it. Es-
pecially, as soon as Google identifies that by stating also the BLE channel, it would have direct application to
Indoor Positioning.
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5
Internship Reflection

To be able to undertake this project, someone should already be familiar with several aspects related to the
topic. To begin with, a strong background in programming was necessary, as more than 3000 lines of code had
to be written in Python and Java, not only for the data analysis, but also, for the logger application running
on the phone. Furthermore, some adequate knowledge in statistics was required too, in order to be able
to process the signals. Finally, some prior understanding of how BLE localization works, was mandatory,
in order to be able to properly direct the whole research. Indeed, all these prerequisites had already been
sufficiently acquired from the Geomatics MSc, before starting the internship.

During this research project, lots of different literature materials were considered and most of them, on statis-
tical approaches. Topics related to properties of various data distributions, distribution comparisons, statisti-
cal measures of performance, prediction models, etc, were among the most reviewed ones. Several references
have been made to them and these can be found within the bibliography.

At this point, the great importance of doing this project in Crownstone should be highlighted. Not only be-
cause, individually, it would be nearly impossible for me to have access to all the crucial equipment that was
used, but also, for the effective assistance and advisements from all supervisors, when required. Additionally,
I even had the opportunity to be very close and gain valuable insight into other interesting AI projects. For all
these, and generally for the great environment that I found there, I couldn’t be more grateful.

I finish this internship, having enriched my knowledge in several fields, which are quite important to me. First
of all, I got to deepen my knowledge and understanding in many statistical aspects, such as the ones men-
tioned above. However, the most important knowledge I gained, is that indeed, it is possible to achieve BLE
signal corrections based on trained models. Something that companies offering Indoor Positioning services,
should invest in further researching. Especially, if Smartphones in the future start providing information re-
garding the identity of the BLE channel.

Before closing, it is worth mentioning that, more MSc Geomatics students are expected to become in the
future interested in a topic close to this one, or Indoor Localization in general. If so, then in case the student
is also familiar with Java, it would be useful to him to follow the «Smart Phone Sensing» course (IN4254)
taught by Z. Zamalloa at the EEMCS faculty. Having followed this course, I acknowledge that I did find it quite
useful during this internship. Therefore, I believe that it should (by default) be listed in our elective courses.
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