
Towards a Sentient Environment Using
a Neural Sensor Network

Freek van Polen

Master’s Thesis
Cognitive Artificial Intelligence

Utrecht University

November 2, 2008



Towards a Sentient Environment Using
a Neural Sensor Network

Freek van Polen

Master’s Thesis
Cognitive Artificial Intelligence
Utrecht University

First Supervisor and Reviewer:
dr. Jurriaan van Diggelen
Utrecht University
jurriaan@cs.uu.nl

Second Supervisor and Reviewer:
dr. ir. Robbert-Jan Beun
Utrecht University
rj@cs.uu.nl

Third Supervisor:
drs. Jan-Peter Larsen
Almende BV, Rotterdam
jp@almende.com

Third Reviewer:
dr. Janneke van Lith
Utrecht University
Janneke.vanLith@phil.uu.nl

November 2, 2008



Contents

Preface 1

1 Introduction 2
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Wireless Sensor Network . . . . . . . . . . . . . . . . . . . 6
1.2.2 Binary Anonymous Sensors . . . . . . . . . . . . . . . . . 7

1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Energy Consumption . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Distributed Application . . . . . . . . . . . . . . . . . . . 9
1.3.3 Self-Organizing . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.1 Performing Tasks . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.3 Contribution to the Field . . . . . . . . . . . . . . . . . . 10

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Neural Networks 12
2.1 Neurons in the Brain . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Plasticity in the Brain . . . . . . . . . . . . . . . . . . . . 13

2.2 Traditional Neural Networks . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Learning in Neural Networks . . . . . . . . . . . . . . . . 16

2.3 Spiking Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Spike-Response Model . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Learning in Spiking Neural Networks . . . . . . . . . . . . 19

2.4 Features of Neural Networks . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Distributed . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.4 Security of Data . . . . . . . . . . . . . . . . . . . . . . . 22

1



3 The Tracking, Prediction and Identification Algorithm 24
3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.4 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.5 Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Learning Procedure . . . . . . . . . . . . . . . . . . . . . 33

3.4 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.3 Introducing Identity . . . . . . . . . . . . . . . . . . . . . 37
3.4.4 Propagating Identity . . . . . . . . . . . . . . . . . . . . . 38
3.4.5 Learning Identity Specific Motion Models . . . . . . . . . 39

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Validation using Simulation 41
4.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Performance Measures . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.3 Identification . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Validation using Prototype 50
5.1 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Environment and Agent . . . . . . . . . . . . . . . . . . . 50
5.1.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.3 Sensor Network . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.1 Software Architecture . . . . . . . . . . . . . . . . . . . . 53
5.2.2 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Discussion and Conclusion 58
6.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.1 Algorithm Specific . . . . . . . . . . . . . . . . . . . . . . 60
6.3.2 Beyond the Algorithm . . . . . . . . . . . . . . . . . . . . 61

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2



Bibliography 66

3



Abstract

Ambient Intelligence is an emerging technology, and one domain where it can be
applied is in intramural health care. In demented elders’ homes, ambient intelli-
gence could be used to track and identify people, so as to control environmental
features, detect hazardous situations, make work more efficient, etc. We applied
the paradigm of neural networks to sensor networks to create an algorithm that
can track and identify agents in an environment. The algorithm is distributed,
self-organizing and uses sensors that output only binary data. We tested the
algorithm for its efficiency both in a simulation and for its feasibility in a real
world prototype.
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Chapter 1

Introduction

One of the major political concerns in the Netherlands today is the aging popu-
lation. An ever larger percentage of the population is above the age of 65 years
(see Figure 1.1), through both baby-booming after the second World War, an in-
creasing life expectation, and low birth rates. This phenomenon can be observed
not only in the Netherlands, but in countries of the European Union and the
Organization for Economic Cooperation and Development in general [1]. This
phenomenon naturally increases the demand for health care and thus induces
the need for the availability of health care to grow proportionally. Moreover, it
poses a heavier tax burden on the working portion of the population, as higher
expenditures on pension and health care must be financed by a smaller portion
of the population [2]. Thus, the availability of health care should not only grow,
it should should also cost less. This can be achieved by for instance making
work more efficient, and creating a better match between the demand and the
availability of health care.

One way to reduce costs in elderly care is ambient intelligence technology
[3, 4, 5]. Ambient intelligence technology is about outfitting an environment
with many computer nodes, that are capable of sensing and acting on their
environment. These computer nodes gather data from the environment using
their sensors; devices that measure some value in the environment, such as
cameras, microphones, thermometers, etc. The computer nodes will process the
data they gather and then act upon the environment using actuators, or present
information to human beings for which this information is relevant. In [4] a
number of scenario’s are presented to illustrate the forms ambient intelligence
could take on. These forms range from fridges that are aware of their contents
to cars that can determine the smoking behavior of their drivers to devices that
can be worn in clothes or around the wrist that take care of the communication
or daily schedules of their user.

Most work on ambient intelligence for elderly care focuses on a decentralized
form of care, where care is delivered to people in their own home, as opposed to
institutionalized elderly care, such as (demented) elderly homes. This is because
of two reasons. First, institutionalized elderly care is usually a lot more expen-
sive than care delivered to people in their own home, and thus it is desirable
to keep people at home as long as possible [6]. Second, allowing people to live
independently significantly increases patient happiness [7, 8]. Ambient intelli-
gence can help in elderly care at home in the form of for instance Body-Area
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Figure 1.1: The age composition of the Dutch population in the years 1950,
1980, 2006, and a forecast for the year 2030. Source: Dutch Central Bureau for
Statistics (CBS, http://www.cbs.nl).
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Networks, where sensors, worn by a patient, constantly monitor the patient’s
vital signs, and sound an alarm if anything is wrong [8]. Another application of
ambient intelligence is to equip the patient’s house with sensors to monitor and
assist a patient in the performing of several activities [7].

That a decentralized form of elderly care is to be preferred over institution-
alized elderly care results in a diminishing demand for institutionalized elderly
care. It is, however, questionable whether the former can completely replace
the latter [9]. Thus, reducing the costs of institutionalized health care has been
identified as a potential application of ambient intelligence [5]. In this thesis, we
will use a specific scenario to construct a preliminary proposal for an ambient
intelligence system for institutionalized elderly care. However, we believe our
results to be useful in other areas too.

1.1 Problem Statement

In this section we will present the aim of this thesis. We will use a scenario to
illustrate what use an ambient intelligence system might have in institutionalized
elderly care. Based on this scenario we shall define the tasks the system will
have to fulfill. We will then state the aim of the thesis.

1.1.1 Scenario

The Humanitas Foundation (http://www.humanitas.nu) is a health and el-
derly care organization located in the city of Rotterdam in the Netherlands.
Humanitas continually strives to improve the health care experience of its cus-
tomers. For instance by allowing them to live autonomously as long as possible
and tailoring the application of care to the specific needs of every customer.
The Hannie Dekhuijzen demented elderly home is one of Humanitas’ clinics in
Rotterdam. It is interested in ambient intelligence to make work more efficient
and to create a better match between demand and availability of health care.
In cooperation with Almende BV (http://www.almende.com), an IT-research
company in Rotterdam, some specific scenarios have been constructed where an
ambient intelligence system could be useful. [10]

People counting

In cases of emergencies, it is highly desirable to be aware of the number of
people present in a building, and their locations in the building. Especially
in a demented elderly home, occupants typically are not capable of escorting
themselves to safety if, for instance, a fire breaks out. It is then important for
both employees and firefighters to know how many people are in the building
and where they are.

Geofencing

The inhabitants of demented elderly home typically are not supposed to be
able to walk around the entire building. Since inhabitants do not always know
where they are, where they are going and how to get back, it is much more
efficient to keep them where they should be then having to escort them back
every now and again. An ambient intelligence system could do this by, for
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instance, controlling a door and only opening it for people that are allowed to
pass through. Alternatively, the system might also help to send elders that have
become lost back to their room by using, for instance, lights in the floor to show
an elder the way.

Controlling environment

The inhabitants of a demented elderly home will typically not be able to prop-
erly control some environmental features such as heating, light, elevators etc.
Though nurses could take care of these issues, it would be more efficient if they
would be regulated automatically. An ambient intelligence system could do this
by for instance automatically switching on and off light and/or heating when
someone walks in and out of a room or sending elevators to floors where someone
might want to use them.

Security

Because a demented elderly home should be open to visitors, it is generally quite
easy for burglars to gain access to the building. If an ambient intelligence system
could recognize the distinct behavior that a burglar would typically exhibit
(i.e. walking up and down hallways trying doors), it could alert employees of a
burglar’s presence, and thereby enhance security.

Toilet Management

It appears that demented elders sometime fail to notice they need to use the
toilet, and instead get some inane feeling that makes them wander up and down
a hallway. It is obvious that it is more efficient to catch these elders while they
are wandering up and down a hallway than when it’s too late. If an ambient
intelligence system would be able to recognize this pattern of walking, it could
alert a nurse and the situation could be resolved.

1.1.2 Tasks

From the scenarios we can extract a number of information gathering tasks that
the system would need to perform. First, each of these scenarios demands that
the network is able to determine the location of agents in the environment. More
specifically, every computer node that is part of the system, must at all times
know whether an agent is at or near the node’s location in the environment or
not. This is a common task for ambient intelligence systems, see for instance
[11, 12], and is often referred to as tracking.

Though for the first scenario the system only has to be able to track agents in
the environment, the other scenarios demand some more intricate information.
For controlling the environment and geofencing, it is desirable that the system
is able to predict the location of agents in the future. More specifically, every
computer node that is part of the system must know an agent is coming to its
location before the agent is actually there. If the system is able to do this, it
can send elevators to floors in time, make sure the lights in a room are on before
someone enters, close a door before a patient walks through, etc. We will call
this task prediction.
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Third, a number of these tasks require that the system can also determine
the identity of the agents in the environment. The precision with which one
would want to identify agents differs per scenario. For the second scenario one
might want to have a unique reference for every agent in the environment, so
that one can define an area in which an agent is allowed to move freely for
every individual agent. For other scenarios it might be enough if the system is
merely able to distinguish between patients, nurses and burglars, allowing an
identification in classes of agents. For now we will assume that we are interested
in classes of agents. Thus, we define the identification task as follows: every
node that is part of the system and that has determined an agent is near its
location in the environment, must also be able to determine the class of that
agent.

1.1.3 Aim

We are now ready to define the aim of this thesis.

In this thesis we will develop an elementary ambient intelligence
system that is capable of performing the tasks: tracking, prediction
and identification.

Thus, though ambient intelligence systems are defined to sense their envi-
ronment, process the raw data that is gathered and act upon their environment,
we will limit ourselves to the sensing and processing. This leaves the question
open of how to use the information gathered by the system in a useful way, as
the ultimate goal is to develop a system that may assist or even substitute the
personnel of a (demented) elderly home.

1.2 Design Decisions

Any system consisting of computer nodes that sense, reason about and act upon
their environment may be called an ambient intelligence system, but of course
these exist in many variations. One major distinction that can be made is be-
tween single sensor systems and sensor networks, where data from multiple, and
possibly different sorts of sensors is fused. The tasks our system has to perform
clearly demand that multiple sensors are spread throughout the environment,
and so we must use a sensor network. Note that since we do not focus on the
acting capabilities of the system, we shall from now on speak of our system as
a sensor network.

1.2.1 Wireless Sensor Network

Sensor networks can be wired or wireless. For nodes in a wired network energy
in principle is available without limit and communication bandwidth is not a
limiting factor. Nodes in a wireless sensor network are battery operated and
employ short range wireless communication. Nodes in a wireless sensor network
are designed for swift and unorganized deployment in an environment where the
infrastructure needed for a wired sensor network is not present, or where the
installation of such an infrastructure is not feasible. Environments where this
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is the case are for instance existing factories or plants, forests, hostile territory
in military operations. We will assume a wireless sensor network.

Using a wireless sensor network instead of a wired sensor network brings
with it some distinct advantages concerning the costs of the network. Since the
reason for designing this sensor network is to reduce costs of institutionalized
elderly care, costs are a significant factor.

First, no infrastructure is needed to deploy a wireless sensor network. Every
node carries its own power supply, and no cables are needed to facilitate the
communication between nodes. In some environments, such as a forest, this is
not so much an advantage as it is a requirement. In other environments, like
buildings or factories it will depend on the size of the building, the infrastructure
already present or the costs of installing the infrastructure, how big an advantage
this is.

Second, research is ongoing to decrease the costs of individual wireless net-
work nodes. This research is stimulated by the fact that wireless sensor networks
are typically being used in large environments, thus allowing for great poten-
tial savings if individual nodes are cheap. Also, environments where installing
infrastructure is impossible, such as in a forest, typically also are environments
where individual nodes have a high probability of breaking down, or never being
retrieved.

Two projects in which work is being performed to decrease the cost of wire-
less sensor network nodes are the ALwEN project and the quest for smart dust.
The ALwEN project (http://www.alwen.nl), which started in early 2008, aims
at creating a platform for ambient intelligence. As the aim is at creating wire-
less sensor networks consisting of up to 10000 nodes total, one goal is to create
nodes that cost not more than a few euro’s[13].

Research is even ongoing to create smart dust ; wireless sensor nodes the size
of a speck of dust and costing not more then a few cents [14, 15]. The nodes
may be scattered in massive amounts in an environment, and start collecting
data. The goal is to create wireless sensor networks that can be deployed in an
environment randomly and that can deal with catastrophic losses of nodes.

1.2.2 Binary Anonymous Sensors

With the decision of using a wireless sensor network in mind, we have to decide
what kind of sensors we will use. Ideally, to track agents in an environment, one
would outfit every agent with a node with Global Positioning System (GPS)
functionality that records the location of the agent at all times. This would
also instantly solve the identification task, since it would then be trivial to add
an id to every node. However, the argument of costs effectively prohibits the
use of nodes with GPS functionality altogether. Moreover, GPS does not work
indoors.

A more affordable option would be the use of RFID (Radio Frequency Iden-
tification) tags: small devices that can be attached to objects and that carry
their own unique id [16]. These id’s can be read by an RFID reader if it is in a
range of, depending on the kind of tag, 30 cm to some meters. Prices of RFID
tags are negligible, making tagging agents with RFID tags and outfitting the en-
vironment with readers viable. This would make tracking and identifying agents
in the environment a trivial exercise again. However, other problems arise, the
main one being privacy concerns. First, RFID technology is not secure enough
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yet to protect RFID tags from theft of their unique id [16]. If we associate the
identity of agents with an RFID id, the system will become vulnerable to iden-
tity theft, which has been identified as a major threat for ambient intelligence
systems [17]. Second, we can not rely on elderly people to always carry their
RFID tag with them if it is integrated in some sort of card. We could solve this
by applying the RFID tags to such objects as shoes, canes, wheelchairs etc [7],
but this would make identity theft even more trivial [17]. A burglar would but
need to grab a cane from a demented elderly person and then be free to move
around.

Instead, we will limit ourselves to nodes that are at a fixed location in the
environment, outfitted with sensors that are binary and anonymous. Binary
and anonymous sensors are sensors that can output only one bit of data per
reading, such that from one single reading one can never directly determine the
identity of an agent in the environment. Examples of this sort of sensors are
motion detectors, breakbeam sensors, which detect whether a beam has been
interrupted, pressure mats, contact switches, which can measure if a cabinet
is open or closed, etc. This constraint will make performing the tasks that we
are facing much more difficult. This is because we have the absolute minimum
of information (at one sensor reading per second, only one bit per sensor per
second, compared to for instance an image per second for a camera). But there
are good arguments for imposing these constraints on the network.

First, research has shown that elders would feel sensors that can determine
their identity to be a serious violation of their privacy [7]. Thus, using such
sensors would endanger the acceptation of the system. Second, because we will
be using nodes that are limited in both their computational and their commu-
nication capabilities, we will not be able to process the amount of data that
sensors like cameras or microphones can gather. The bandwidth is not available
to send the data to some processing unit, and the nodes themselves are not ca-
pable of processing so much data. Third, if we are able to design a system that
performs the above mentioned tasks using only binary and anonymous sensors,
the performance of the system on these tasks can only improve if more complex
sensors are added. Thus, we will never be in a position where the system relies
on the use of complex sensors for its performance, and will thus be robust to
the loss of such sensors for whatever reason.

1.3 Challenges

The design decisions we have made pose a number of challenges and demands
to the system.

1.3.1 Energy Consumption

The first challenge is that since our individual nodes will be powered by bat-
teries, energy consumption becomes an issue that has to be taken into account.
Specifically, it is widely acknowledged that for wireless sensor nodes communi-
cation is more energy consuming than computation [11, 12, 18, 19, 20], and so
we will have to take care to create a balance between the two that will make
sensor nodes last as long as possible.
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1.3.2 Distributed Application

The second challenge is that applications for wireless sensor networks of the size
we are aiming at need to be distributed. This means that every node in the
network takes care of a small part of he computation involved in the application.
Moreover, nodes do so using only local data: data gathered either by itself
or other nodes that are in the vicinity. The reason that using a centralized
approach, where data is sent to a central processor, can not be used is that the
communication capabilities of nodes are too limited. Nodes will typically not
have a communication range that enables them to communicate with a central
station directly. Thus, a centralized approach will demand individual nodes
to double as router. Especially nodes that are close to a central station will
be heavily burdened by this [21]. Since communication bandwidth is limited,
the routing task will quickly become too heavy for individual nodes. Moreover,
because communication consumes a lot of power, it is undesirable to burden
nodes with a lot of communication. Instead, creating a distributed application
will limit communication to a local scale.

1.3.3 Self-Organizing

In a wireless sensor network consisting of thousands of nodes, it is not feasible to
program every node individually with data specific to that node. Data specific
to a node include data concerning the location of a node in the environment
that is required for performing tasks, or data on which other nodes the node
can communicate with. Rather, nodes should be programmed in a uniform way
and, once deployed, organize themselves into a working network. This means
nodes will have to find and identify neighboring nodes themselves, and somehow
learn any data that they require for the application.

1.3.4 Robustness

The last challenge we identify is one of robustness. A network of cheap and
small nodes may not be as reliable as a more expensive, wired sensor network.
Nodes may be prone to breaking down or getting lost. Moreover, the wireless
communication facilities of wireless nodes may cause a high rate of delayed
or missing messages. Also, the choice of using binary and anonymous sensors
leaves us with little possibilities of checking the reliability of individual sensor
readings. Thus, the network will likely be faced with an amount of noise in
the input, delayed or missing messages, and broken nodes. Any application
developed for a wireless sensor network must be robust to these issues, and not
suffer too much from them in terms of performance.

1.4 Approach

We have made a number of design decision, and identified the challenges that
these decisions pose to our system. It is now time to discuss the approach we
will take to solve the tasks that we have set for the system, while dealing with
the challenges that we identified.
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1.4.1 Performing Tasks

Our system will have to operate distributed, and thus every node will have to
take part in performing the tasks, using only local data. For the tracking task,
every node has to determine whether an agent is present at its physical location
in the environment. To do this, every node will use the data its own sensor
gathers, and data that sensors on nodes in the vicinity gather. Nodes will not
only use the most current sensor data, but also data from the past.

For the prediction task, every node has to determine whether an agent is
coming to its location or not. To do this, nodes will attempt to learn the typical
behavior of agents. Using the typical behavior that agents exhibit and current
sensor readings, nodes can determine whether an agent is coming or not.

For the identification task, nodes have to be able to determine the class of
an agent that they have determined to be at their location in the environment.
With the absence of sensors that can directly identify agents, some other means
will have to be employed. We will let nodes learn the typical behavior of in-
dividual classes of agents. By comparing the behavior an agent is currently
exhibiting with the typical behavior of different classes of agents, the class of
an agent can be determined.

1.4.2 Neural Network

We have to create an application that is distributed, self-organizing, robust to
noise and, moreover, able to perform the tasks the way we described above.
Thus, the application must allow individual nodes to learn typical behaviors of
agents. These requirements inspire us to adopt the paradigm of artificial neural
networks. More specifically, we will view the entire wireless sensor network
as one artificial neural network. Artificial neural networks are distributed and
robust to noise and breaking down of individual network components by their
very nature. We will design the neural in such a way that it is fully self-
organizing. Last, neural networks are capable of learning, and thus adopting
neural networks provides us with a means to learn the typical behavior of agents.

1.4.3 Contribution to the Field

The novelty of this work lies in two issues. First, this is, to the best of our
knowledge, the first attempt to create a wireless sensor network that can perform
the three tasks we defined, while being distributed, self-organizing, robust to
noise and using only binary and anonymous sensors. Though much work has
been done on performing each of these three tasks using wireless sensor networks,
not one work has been found that takes each of these challenges into account.

Secondly, to the best of our knowledge, this is the first attempt at applying
the paradigm of artificial neural networks to wireless sensor networks. Moreover,
the attempt to create an actual physical neural network, rather than a computer
simulated neural network is rather new. It is, however, our belief that the field
of wireless sensor networks is especially suitable for creating physical neural
networks.
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1.5 Thesis Outline

In the next chapter we will give a brief introduction to the field of neural net-
works. We will first introduce what Maass [22] calls the first and second genera-
tion of neural networks, referred to as traditional neural networks. We will then
discuss what he calls the third generation of neural networks; spiking neural
networks. This chapter serves both to introduce terminology and to argue why
the paradigm of neural networks is fit for our needs.

In chapter 3 we will present the algorithm that will operate on a wireless
sensor network and is capable of performing the three tasks mentioned above:
tracking, prediction and identification. For each task, we will first review work
that has been done on performing that task using wireless sensor networks,
before presenting our own approach.

In chapter 4 we will perform an analysis of the performance of the algorithm
on the three tasks. We will use a simulation to test the algorithm on the
three tasks both in noise-free and noisy scenarios. We will present a number of
relationships between different parameters of the algorithm and the performance
and further discuss the results.

In chapter 5 we shall present a partial implementation of our algorithm in
a real world prototype. We will use this prototype to analyze the practical
feasibility of the algorithm when implemented on limited computational devices
such as the wireless sensor nodes we intend to use.

In the sixth chapter we shall discuss the algorithm, based on the validation
by simulation and the validation by prototype. We will first discuss whether
the algorithm we proposed performed the tasks to a satisfying extend, and
whether it deals with the challenges we have identified. We then will give
various directions for further research and conclude the thesis.
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Chapter 2

Neural Networks

Artificial neural networks (henceforth simply neural networks or nn’s), are a
computational paradigm that is inspired by the functioning of the human brain.
The brain consists of billions of neurons; electrically excitable cells that are
interconnected in a myriad of ways. A neural network is essentially an attempt
to create a small brain-like structure consisting of artificial neurons. Though
neural networks have been around since the 1940’s, it was not until the mid
80’s that they received any real attention. Since then, neural networks in many
variations have emerged, and they have been used for many different purposes.
The different variations of neural networks can be divided into three major
generations [22], which we will review in turn. However, we will first briefly
review the workings of neurons in the brain, so as to better understand the
working of neural networks. We will end the chapter by discussing several
features of the paradigm of neural networks and argue why they are fit for our
needs.

2.1 Neurons in the Brain

An extensive description of the exact working of single neurons is outside the
scope of this thesis, and we will here review only those aspects that are necessary
to understand the rest of the chapter. We refer the interested reader to [23] for
an elementary introduction to neuroscience, and to [24] for an introduction to
neuron models from a computational point of view. Furthermore we would like
to encourage the interested reader to search, for instance, on the web, as a
wealth of material on neuroscience exists.

2.1.1 Neurons

A typical neuron looks roughly as illustrated in Figure 2.1. In the cell body
an action or membrane potential is built up under the influence of incoming
electrical pulses. These pulses are received through the dendrites, and come
from other neurons. Depending on the type of the neuron sending the pulse, the
pulse will cause the action potential to either rise or fall. If the action potential
of a neuron deviates from its so called resting potential, for instance through
a number of incoming pulses, it will gradually converge back to this resting
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Figure 2.1: The typical structure of a neuron in the brain.

potential. One should note that variations in action potential of a neuron take
place in the millisecond scale. A neuron that has been heavily excited will have
its potential converge back to the resting potential in tens of milliseconds.

Once the action potential of the neuron crosses some threshold from below,
it discharges, and we say it fires or spikes. Note that for the action potential of
a neuron to cross this threshold, generally a burst of incoming pulses is required.
Upon discharging, the action potential of the neuron falls steeply to a very low
value, effectively creating a refractoring period. During this period, which lasts
some miliseconds, the neuron can not spike, no matter the amount of pulses
received from other neurons. Over time, the potential automatically converges
back to the resting potential.

When a neuron discharges, it sends out an electrical pulse of its own. This
pulse travels down the axon, and reaches the axon terminals. At the axon
terminals there is a small space, where the axon terminal of this neuron and
a dendrite of another neuron join. This space is called a synapse. When the
electrical pulse reaches the synapse, the axon terminal will release an amount of
neuro-transmitter chemicals. These chemicals traverse the synapse, and cause
an electrical pulse at the receiving neurons dendrite, thus completing the journey
of the electrical pulse to other neurons.

In the human brain, neurons of many different sorts exist. We already made
the distinction between neurons that excite the action potential of other neurons
and neurons that inhibit the action potential of other neurons. Other variations
exist for instance in the firing regime (e.g. a pattern of spikes over time) neurons
settle in when fed a constant stream of incoming pulses. Since the brain consists
of billions of different types of neurons, connected by many kilometers of axons
and dendrites, the exact way in which these neurons interact to create human
intelligence is as of yet unknown.

2.1.2 Plasticity in the Brain

An important feature of the brain is that it is not static, but plastic. The
efficiency with which a neuron is capable of eliciting a reaction from another
neuron by sending pulses may be subject to change over time. This phenomenon
is termed synaptic plasticity, and exists for both the long and the short term.
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Short term plasticity exists on the millisecond scale, for instance during the
refractoring period of a neuron, when incoming pulses will have little to no
impact on the action potential of the neuron. Evidence also exists that if a
neuron sends a burst of pulses, the first of these will have more impact than the
last [24].

Synaptic plasticity for the long term induces change that lasts for hours,
days or even longer. Hebb [25] already conjectured in 1949 that some form of
synaptic plasticity should be present in the brain. He stated that if a neuron
A persistently had a part in the firing of neuron B, neuron A would grow more
efficient in firing neuron B. This way clusters of simultaneously firing neurons
would evolve. From empirical evidence, it indeed appears that such synaptic
plasticity exists in the brain [26]. It is important to note that, even though
Hebb’s postulate says nothing of neurons growing less efficient, this certainly
does take place in the brain. Long term synaptic plasticity is often referred to
as Long Term Potentiation (LTP) and Long Term Depression (LTD). We shall
not delve further into synaptic plasticity in the actual brain, but merely stress
the point that it exists. Later, when discussing artificial neural networks we
shall return to this point.

The brain is plastic in another way. When a neuron spikes, the electrical
pulse it sends out naturally takes some time to journey from cell body to cell
body. Empirical evidence suggests that the precise timing of spikes and thereby
the time pulses reach a next neuron, are of importance in for instance the
auditory system of the barn owl [24]. It appears that the delay between the
spiking of a neuron, and the arrival of the pulse at the next neuron may be
increased or decreased to, for instance, achieve more synchronicity between the
firing times of neurons. The delay may be changed by for instance changing the
length or thickness of an axon [27].

2.2 Traditional Neural Networks

Traditional neural networks (for the rest of this section, we shall omit the “tra-
ditional”), though inspired by the brain, do not resemble it very much. Neural
networks consist of neurons, as the brain, and the efficiency of connections
between neurons may change. This last feature is called learning. However, ar-
tificial neurons are not nearly as complex in their behavior as biological neurons,
and the same goes for the learning procedure of neural networks compared to
plasticity in the brain. As a computational paradigm neural networks do have
their merits, however. We will first discuss the basic architecture of neural net-
works, then outline the various learning procedures and finally. As an extensive
discussion of the field of artificial neural networks is not within the scope of this
thesis, we refer the interested reader to [28].

2.2.1 Architecture

The neural network consists of a number of neurons, connected to form a specific
architecture. Every neuron in the network has a variable activation, analogous
to the membrane potential of neurons in the brain. Associated with every
connection between two neurons in the network is a weight, which represents
the efficiency of the connection. The typical neural network is arranged in
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either two or three layers: an input layer, possibly a hidden layer, and an output
layer. Connections exist between neurons of subsequent layers, but not between
neurons of the same layer or between neurons that are more than one layer apart
(see Figure 2.2). The input layer is where input enters the network. The hidden
layer, if present, is called this way because it is somewhat “hidden” from the
outside world. The output layer is where the network generates output.

Figure 2.2: The general architecture of a neural network consisting of an input
layer, a hidden layer and an output layer.

To operate the network, one first sets the activation of neurons in the input
layer to some value. Then subsequent layers of neurons use the activations of
neurons in the preceding layer and the weights of connections between the two
layers to compute their own activation. This process goes on until the neurons
in the output layer have computed their activation, and the network produces
output. Formally, the activation A of neuron i is some function f of u, where
u is the sum of the activations of all neurons j in the preceding layer that are
connected to i, multiplied by the weight w between i and j.

ui =
∑

j

wij ∗Aj (2.1a)

Ai = f(ui) (2.1b)

The first generation of neural networks employed a boolean function for f
(see 2.2a), and are called perceptrons. Two layered perceptrons (i.e. consisting
only of an input layer and an output layer) are able only to solve problems that
are linearly separable, which means they are unable to solve for instance the
XOR problem [29]. In logic, p XOR q means that either p is true or q is true,
but not both. If we draw a table with the truth values of p and q, as in table
2.1, we can see that the two cases where p XOR q is true can not be separated
from the two cases where it is not by a single linear line. It was later proven
that multi-layer perceptrons (i.e. consisting also of a hidden layer) were able to
solve non-linearly separable problems.
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p 0 1
q
0 0 1
1 1 0

Table 2.1: The XOR problem is an example of a problem that is not linearly
separable.

The second generation of neural networks employs linear (see 2.2b) or sig-
moidal functions (see 2.2c) for f , and is considerably more powerful [22].

f(ui) =

{
1 if ui ≥ θ

0 otherwise
(2.2a)

f(ui) = ui (2.2b)

f(ui) =
1

1 + e−ui
(2.2c)

Moreover, activation functions that allow neurons to have analog instead
of digital activations are biologically more realistic. In the brain computation
takes place continuously rather then in batches, as in neural networks. Thus,
the batches in which neural networks operate can be seen as a discretization of
the continuous timescale at which real neurons operate. In neural networks of
the first generation, the activation of a neuron can only be 1 or 0, meaning one
can only represent whether the neuron fired or not this time step, or whether
it fired more than some threshold. Neural networks of the second generation
allow one to model the real firing rate of a neuron during a time step.

2.2.2 Learning in Neural Networks

We discussed earlier perceptrons solving non-linearly separable problems. The
propagation of activations of neurons through the network completely depends
on the values of the weights of the connections. Thus, neural networks are
only capable of solving problems if the weights in the network are assigned the
correct values. The most appealing feature of neural networks is that they are
able to learn these weight values. Typically, the weights of the connections in a
network are initialized to random values, causing the network to output random
values. However, by applying a learning procedure after every time an input is
presented, over time the weights of the network can be automatically adjusted
such that the network will perform better.

Presenting an input to the network, gathering the output and applying the
learning procedure is called an iteration. Every iteration, the learning procedure
updates every weight with some ∆wij . The learning procedure that is used
determines how this ∆wij is calculated. We will give here two examples of
learning procedures, one supervised, the other unsupervised. Though these two
examples by no means cover the entire spectrum of learning procedures available
for neural networks, they will give a feeling for what is possible.
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Supervised Learning

Supervised learning procedures require a teacher, external to the neural network,
to tell the network what the correct output for a certain input was. Thus, to
train a network in a supervised way, one needs a training set, consisting of pairs
of input data and correct output data. Possibly the most famous supervised
learning procedure is backpropagation [28, 30]. Suppose we have a network
consisting of a number of input neurons j and a number of output neurons i,
all employing a linear activation function as in 2.2b, and no hidden neurons.
Because we know for each input the desired output T for every output neuron,
we can define an error measure E on the network for any particular input:

E =
1
2

∑
i

(Ti −Ai)2 =
1
2

∑
i

(Ti −
∑

j

wij ∗Aj)2 (2.3)

Note that the better the network performs, the smaller the error E for inputs
is. By differentiating E towards some wij , we can see if we have to make wij

smaller or larger to make E smaller. Thus, we can use the following update
function:

∆wij = −α ∗ dE

dwij
= α ∗ (Ti −Ai) ∗Aj (2.4)

Here the − makes sure the network learns in the correct direction, i.e. to-
wards a smaller error. The factor α is often called the learning rate, and deter-
mines how fast the network learns. This technique of determining the weight
change for every weight is called gradient descent. The nice thing is that if we
have multiple layers, we can simply expand the error function E and differentiate
it also towards weights that are buried deeper in the expression. This learning
procedure is typically repeated for some time, using inputs in the training set
multiple times, until the error of the network on the entire training set is below
some fixed threshold.

Unsupervised Learning

In some cases, a training set is not available because the correct output for
inputs are not known. In this case, unsupervised learning procedures exist that
are capable of creating clusters in the set of inputs. Where a supervised learning
procedure may be used to for instance teach a network to classify a painting as
either a Van Gogh or not a Van Gogh, an unsupervised procedure will create
a clustering in the set of paintings it has seen, such that hopefully one cluster
will correspond to Van Gogh paintings, while the other corresponds to paintings
that are not Van Gogh’s.

One well known neural network that uses unsupervised learning is the Ko-
honen Network [31]. The Kohonen network consists only of an input layer and
an output layer, and an alternative activation function is used for the output
neurons (see 2.5a). Every iteration, only the output neuron with the lowest
activation and some of the neurons that are nearby in the output layer get to
learn. The weights are updated towards the activation of the input neurons (see
2.5b), such that the next time this or a similar input is presented, this neuron
will do even better. This way, output neurons that are near one another in the
output layer will learn to respond to similar inputs, and thus a clustering arises.
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Ai =
√∑

j

(Aj − wij)2 (2.5a)

∆wij = α ∗ (Aj − wij) (2.5b)

2.3 Spiking Neural Networks

We mentioned earlier that neural networks from the second generation are bi-
ologically more plausible than neural networks from the first generation. Both
types of network discretize the continuous time that real neurons operate in.
However, networks of the first generation can only represent whether a neuron
spikes or not during an interval, while networks from the second generation rep-
resent the firing rate of a neuron during an interval. Thus, more information
can be encoded by a single neuron. Over the years, however, empirical evi-
dence has gathered that suggests that real neurons encode information not only
by their average firing rate, but also by the precise timing of individual spikes
[22, 24, 32, 33].

The third generation of artificial neural networks consist of spiking neurons,
and treat the timing of individual spikes as the carrier of meaning instead of rates
of spikes. This shift has some major consequences. To calculate the activation
of a neuron, one will have to take into account the individual spikes of connected
neurons. Also, by considering the timing of individual spikes to be the carrier of
meaning, we have introduced time as a factor. It will no longer suffice to have
the network operate in batches that are not related to one another. Rather,
spiking neural networks have to operate on a time scale.

2.3.1 Spike-Response Model

This addition of time as a factor calls for different activation functions for indi-
vidual neurons. There are two notationally different models for the activation
of spiking neurons: Integrate-and-Fire models and Spike-Response models. The
first makes use of differential equations, the second of kernels that account for
different features in the model. Both models are functionally the same, and
both models exist in variations of complexity. The most complex models are
aimed at mimicking the exact dynamics of individual neurons in the brain,
and are thus unfit to simulate populations or networks of neurons. The more
simple models are less expressive at the level of individual neurons but are com-
putationally less expensive and so more fit for simulating networks of spiking
neurons1. We will only describe the most general Spike-Response model, as the
algorithm we will propose borrows mainly from Spike-Response models. For an
extensive introduction to spiking neural models of different complexity, and the
Integrate-and-Fire model, we refer to [24].

There are three phenomena of influence on the activation of a spiking neuron:
a refractoring period after the neuron has spiked, spikes of connected neurons
and external input. Each of these three phenomena are handled independently

1Izhikevich [32], however, suggests an Integrate-and-Fire model with only four parameters
that is both computationally feasible, and can model at least twenty behaviorally different
types of neurons that are found in the brain.
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by three different kernels, and thus, the activation function for a neuron i con-
sists of three different parts. The η kernel models the refractoring period a
neuron i experiences after it has spiked. Thus, this kernel depends on the cur-
rent time t and the time of the last spike of the neuron t̂i, see equation 2.6a. A
neuron i spikes if its activation A reaches a certain threshold ϑ from below, and
upon spiking the time of the last spike of the neuron t̂i is updated. The ε kernel
models the response of the activation of neuron i to individual incoming spikes
from connected neurons j. The effect of an individual spike f on the activation
of a neuron decays over time, and hence the kernel depends on the difference
between the current time t and the time at which spike f from neuron j arrived
t
(f)
j . The maximal effect of the spike on the activation of neuron i also depends

on the last time neuron i itself spiked, since during the refractoring period neu-
rons are effected less by incoming spikes. Since every spike of every connected
neuron in principle has an everlasting effect, and the effect of spikes is influenced
by the weight of a connection, we sum over the weights of all connections and
over all past spikes. See equation 2.6b. The third kernel is the κ kernel, which
models the neuron’s response to an external input current Iext. The kernel has
the same dependencies as the ε kernel, but since the input current is continuous
instead of discrete like incoming spikes, we have to use an integral instead of a
summation. See equation 2.6c.

Ai(t) = η(t− t̂i)+ (2.6a)∑
j

wij

∑
f

ε(t− t̂i, t− t
(f)
j )+ (2.6b)

∫ ∞

0

κ(t− t̂i, s)Iext(t− s)ds (2.6c)

Typical η kernels will generate a large negative value right after a spike,
which then decays back to a value of 0 over time. An example is equation 2.7a,
where τI and τR are parameters that determine the shape of the function. The
function is drawn in Figure 2.3(a) for τI = −1 and τR = 4. A typical ε kernel
will let incoming spikes first increase the activation of a neuron swiftly, after
which the effect decays again over time. A possible ε kernel that is stripped of
its dependency on the last spike of neuron i (the shape of the effect of incoming
spikes is always the same) is equation 2.7b. τM and τS are again parameters
that allow one to change the shape of the function. The function is drawn in
Figure 2.3(b) for τM = 4 and τS = 1.

η(t− t̂i) = −τI ∗
−(t− t̂i)

τR
(2.7a)

ε(t− t
(f)
j ) = exp(

−(t− t
(f)
j )

τM
)− exp(

−(t− t
(f)
j )

τS
) (2.7b)

2.3.2 Learning in Spiking Neural Networks

Learning has a prominent role in traditional neural networks, as these networks
must go through a learning phase to be able to perform any task. For spiking
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(a) (b)

Figure 2.3: Shapes of a possible eta kernel (a) and epsilon kernel (b).

neural networks, the situation is a little different. In traditional neural networks,
assigning meaning to the activation of input and output neurons is a quite
straightforward process. If for instance, the task at hand is to decide which
painter painted a specific painting, one could let the input neurons represent
specific features of the painting. This process is called feature selection, and see
for instance [34] for a painter recognition application of neural networks. The
output neurons could then represent individual painters. This straightforward
interpretation makes applying a learning procedure useful, as one can steer the
network to perform better on the task.

For spiking neural networks, it is a lot harder to interpret the behavior
of individual neurons. Where neurons in a traditional network will, for any
given input, simply output a single value, spiking neurons receive a continuous
input, and produce a continuous output consisting of a number of spikes. In
this output, not only the number of spikes is important, but also the timing of
individual spikes, and the combination of timings of multiple spikes, possibly of
different neurons. Thus, interpreting this neural code is far from trivial [24].

If interpreting the behavior of neurons is very hard, it is even harder to let
a spiking neural network learn to perform the desired behavior. Thus, though
supervised learning methods for spiking neural networks do exist [35], unsuper-
vised learning methods are usually used. We shall here focus on a particular un-
supervised method: Spike-Timing Dependent Plasticity (STDP) [24, 26, 33, 36].

In STDP, given a presynaptic neuron j that sends spikes to a postsynaptic
neuron i, a weight modification is applied for every pair of pre and postsynaptic
spike. Both the size and the direction of the weight change are determined by
the difference in timing of the pre and postsynaptic spike t(j) − t(i). Experi-
mental evidence has shown that this type of learning procedure is also present
in the brain. Though the dependency of size and direction of weight change on
timing of pre and postsynaptic spikes as depicted in Figure 2.4 is most common,
different dependencies have been found across different types of neurons [26].

To prevent the weights of connections to grow unbounded to either very large
positive or negative values, some measure needs to be added to keep the weights
within some range. Note that in the function as depicted in Figure 2.4 such a
measure is not present. The range in which weights are allowed to fluctuate is
usually from 0 to 1. One way to enforce this range is to multiply the weight
change with 1−wij if the connection is strengthened, and wij if the connection
is weakened. This is a so-called soft restraint. A hard restraint would be to
simply cut a weight back to either of the boundaries of the allowed range if it
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Figure 2.4: A typical form of the STDP learning function. If the presynaptic
spike precedes the postsynatpic spike the connection is strengthened, else it is
weakened.

grew out of the boundaries.
One can see that this is a Hebbian learning procedure, as described earlier,

as indeed connections between neurons that are efficient at making one another
spike are strengthened. However, the weakening of neurons if they spike too
late introduces a form of competition between neurons. Presynaptic neurons
will have to compete over control of the spike timing of postsynaptic neurons
[36]. The result is that in a spiking neural network in which this learning
procedure is applied, clusters of neurons evolve that spike highly synchronously.

2.4 Features of Neural Networks

We will now discuss several features of neural networks that make them espe-
cially fit for our needs. We start by noting that since traditional neural networks
have no natural way of dealing with input that is spread over time, we will be
borrowing heavily from spiking neural networks. In spiking neural networks,
time is an integral factor in the way the neurons work. This is desirable, since
we will be using sensor readings over time to perform the tasks.

2.4.1 Distributed

Artificial neural network operate, by their very nature, in a distributed and par-
allel fashion. The artificial neural network’s largest single unit of computation
is the neuron, which does little more then calculating its own activation based
on the incoming activations from lower layers in the network, and updating the
weights of the connections it has to these layers. It does so independent of neu-
rons that it is not connected with. Yet, it has been shown that neural networks
are computationally as powerful as Turing machines [22]. However, because all
neurons from the same layer perform their computation in parallel, the neural
network is potentially much faster than a traditional sequential computer. This
feature is of course not present in a neural network implemented by a computer,
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since a computer can only simulate the neural network in a sequential manner.
By viewing the entire sensor network as a neural network, we thus inherit the
distributedness of neural networks.

2.4.2 Learning

A second feature is that neural networks are able to learn how to perform a
certain task, as described above. Theoretically a computational system is a
mapping of an input space to an output space. In traditional computing this
mapping has to be designed by the designer of the system. While in some cases
this can be desirable, for instance because you want absolute control over what
the system will do, it can become unrealistic when designing this mapping is too
hard for a human being to do. While for a task like deciding whether a painting
is a van Gogh or not it may be feasible to design this mapping, if the task is to
decide which of ten painters painted a painting, it may not be feasible. Neural
networks, if trained correctly, can learn this mapping.

Though training a traditional neural network to perform a certain task is
quite straightforward, for spiking neural networks this is less so, as we argued
above. Still, we will be using a learning procedure that is similar to the STDP
learning procedure outlined above, to learn the typical behavior of agents. How-
ever, we will take great care in designing the network in such a way that neurons
learn in a meaningful manner.

2.4.3 Robustness

Another feature that neural networks have is that they generally are robust to
noise in the input and failure of individual neurons. Because every input neuron
is connected to many neurons in the next layer, and every neuron in this next
layer is connected to many input neuron, it does not really matter if one or
a few input neurons have wrong activations. These wrong activations will be
compensated and the consequences will be limited. This stands in contrast to
traditional sequential computational methods, where one wrong bit can cause
system failure [28]. Also, if one removes a neuron from a neural network it will
typically only perform marginally worse, since only a tiny bit of the mapping
it has learned is removed. This phenomenon is also called graceful degradation.
Moreover, if one trains the network again, other neurons will simply learn to fill
the gap. This in contrast to for instance computers that simply do not work if
a system component is broken.

We have identified robustness as a challenge for any application being de-
veloped for a wireless sensor network. Our hope is that by viewing the entire
sensor network as a neural network we will inherit the property of robustness
the same way we inherit the property of distributedness.

2.4.4 Security of Data

One major challenge to the use of ambient intelligence systems is the issue
of privacy concerns. Ambient intelligence systems allow for the collection of
personal data on an unprecedented scale. This data can of course be used to
both benign and malicious end, but between the two there is a large gray area,
making it unclear when use of this data becomes misuse. If it hard to decide

22



when use becomes misuse, it is even harder to protect the data from this [17].
Thus, if we explicitly store data in whatever way, the system is vulnerable to
the misuse of data. Neural networks do not store data explicitly, and, moreover,
whatever they have learned is completely distributed over the network. Data
that enters the network is constantly being used to generate output, that will
have to be used on the spot. Patterns that the network learns are stored in
the form of many values that are distributed over the network, and that do
not mean anything by themselves. Thus using the paradigm of neural networks
inherently protects data that is gathered, and patterns that are learned, from
theft or misuse.
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Chapter 3

The Tracking, Prediction
and Identification
Algorithm

In this chapter we shall present an algorithm that is capable of tracking agents
in an environment, predicting their locations in the future, and identifying the
agents based on the paths they travel in the environment. The algorithm is a
neural network, and will include a learning mechanism to facilitate prediction
and identification as well as to increase the system’s robustness to noise. First,
we shall introduce the assumptions we make, from which we start working on
the algorithm. We will then first discuss related work on the tracking task,
present our own approach, and develop the tracking algorithm. We will then do
the same for the prediction task and finally the identification task. We will end
the chapter by discussing the proposed algorithm.

3.1 Assumptions

Due to the limited scope of this thesis, we can not develop every part of the
sensor network. Thus, we are forced to make a number of assumptions.

We assume that a number of nodes are distributed throughout the environ-
ment in some random but even way. Every node carries a binary and anonymous
sensor, as discussed in section 1.2. Each node has its own system clock, is ca-
pable of some computation and able to store a limited amount of data. We
shall not analyze the exact requirements the algorithm poses to the hardware of
individual nodes. We do, however, conjecture that with sufficient optimization
of the algorithm, these requirements will not be an issue in choosing hardware
for an implementation of the algorithm. We will explore this issue a bit further
in chapter 5.

We assume that each node is capable of broadcasting messages over a short
distance (i.e. < 10 meters). We call this its broadcasting range, every other
node within this broadcasting range a neighbor, and the set of neighbors the
neighborhood of a node. Broadcasting here means sending a single message
in every direction that can be received by every node within the broadcasting
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range. We assume that nodes are capable of sending such a message at least
once a second, and can receive multiple such messages per second. We assume
that such a message can contain, apart from a unique id of the sending node,
at least some ten bytes of data.

We further assume that during a network initialization phase these nodes can
identify any other nodes within their broadcasting range and can determine the
physical distance between itself and other nodes. This could be done for instance
by using the signal strength of a message received from another node. Another
option would be to have every pair of nodes compare their neighborhoods with
one another. They could then, with some accuracy, derive the distance between
them from the amount of shared neighbors.

We introduce a common timescale consisting of equally sized time steps,
for instance one second. This will be the scale on which our algorithm shall
operate. Note however, that we do not introduce a global clock in the network.
We demand that nodes operate in time steps of the same length, not that they
always share the same exact time. Had we demanded this, we would have to
devise some way to keep all nodes in the entire network synchronized, and this
is not something we wish to be bothered with, if it can be helped.

One final assumption concerns the agents in the environment. We assume
that agents move through the environment at a constant speed, that is known
a priori. We will give directions on possible improvements to the algorithm so
that this assumption may be relaxed when discussing the algorithm in chapter
6.

3.2 Tracking

We will now first review related work on tracking in wireless sensor networks
before presenting our own approach and developing the algorithm.

3.2.1 Related Work

In [11, 37, 38], probabilistic algorithms are proposed to track moving objects
in an environment. In probabilistic algorithms, the goal is to find a mapping
of sensor data to a vector of targets with associated location that maximizes a
posterior probability1. In other words: given a set of input data, find the set
of real world events that was most likely to give rise to this set of input data.
These algorithms focus on distinguishing sensor readings caused by agents from
sensor readings caused by noise, and on associating sensor readings to the correct
agent, if multiple agents are in the environment. This makes these algorithms
robust to noise.

The distinction between a sensor reading caused by an agent and a sensor
reading caused by noise is made based on the readings of multiple sensors. A
fundamental observation underlies this: agents or objects move through the en-
vironment, rather than that they teleport. Thus, they will typically cause a
trail of sensors readings over time, rather than isolated sensor readings. Distin-
guishing between sensor readings caused by an agent and sensor readings cause

1An extensive description of probabilistic models in general is beyond the scope of this
thesis, but see for instance [39] for an elaborate introduction.
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by noise based on this observation, can thus only be made using multiple sensor
readings.

The probabilistic algorithms proposed in [37, 38], requires all input data to
be present in one point. Thus, these algorithms are centralized by nature. As we
saw already, in wireless sensor networks using a central processor typically is not
feasible. In [11] an attempt to solve this was to chop up the sensor network into
geographical regions, each with an own “supernode”, that is more capable then
the regular sensor nodes. Sensor nodes were assigned to their nearest supernode,
thus creating a number of clusters. The supernode performs all computation of
the cluster, using all sensor data that nodes in the cluster gather. However, in
a wireless sensor network that is designed to be cheap and ad-hoc deployable
even in hostile environments, the presence of “supernodes” is a somewhat daring
assumption.

Another kind of algorithm that is frequently suggested are geographical in-
terpolation algorithms [12, 18, 40]. In these algorithms multiple nodes cooperate
to determine the location of an agent by interpolating the positions each node
sensed an agent at. Since nodes only cooperate if they are near one another and
they sense an agent at the same time, this approach is a lot more distributed in
nature.

All the proposed algorithms mentioned above assumed the availability of
sensors that are capable of determining the distance to an agent. Also, the
sensors are assumed to be able to do so in every direction, within a certain
radius. However, specifically what kind of sensor is capable of doing this is not
discussed. In [20], a tracking algorithm was proposed that used only binary
sensor data: every sensor could output only one bit of data at a time. It was
shown that tracking agents was possible with this minimalist approach, but
at the expense of some strong assumptions. The single bit that sensors could
output was whether an agent was moving to the node or away from the node,
meaning that sensors still had to be able to detect the distance to an agent.
Also, the data was assumed to be gathered in one central processing unit. This
was assumed to be feasible, since nodes only had to send messages containing
one bit of information. In a large network however, it is not just the size of
messages that challenges the communication channels, but also the amount of
messages that have to be routed to the central station. The amount of messages
in particular will tend to clog up the network near the central unit [21].

3.2.2 Our Approach

We will use the observation that agents will typically cause a trail of sensor read-
ings over time. However, in contrast to the probabilistic algorithms described
above, we will create an algorithm that is distributed by nature. We let every
node in the network gather evidence for the claim that an agent is currently
present at the location of the node in the environment. To do this, nodes use
each other’s sensor readings, but otherwise they gather evidence independently.

To achieve this, we let the network implement an artificial neural network.
The neural network has two layers: an input layer and an output layer. Every
node in the network implements an input neuron and an output neuron, and the
location of these neurons in the neural network is tied to the physical location
in the environment of the node that implements them. An input and output
neuron are connected if the nodes that implement them are within each others

26



broadcasting range. Note that an input and output neuron implemented by the
same node always are connected. Thus, the physical distribution of the nodes
in the environment determines the architecture and connectivity of the neural
network that is implemented.

Each time step, a node uses its sensor to set the activation of its input
neuron to a value of either 0 or 1 for that time step. This can be done in various
ways. The node could take only a single sensor reading, and let it determine
the activation of the input neuron (note that since the sensors are binary, this
case only requires a one to one mapping form sensor reading to input neuron
activation). Alternatively, the node could take multiple sensor readings, and
use a threshold function. If the activation of the input neuron is set to 1 we say
it spikes, and the node broadcasts this spike. The message used to broadcast
this spike in principle needs to contain only the id of the node, since if the input
neuron does not spike, we do not broadcast this.

Also during the time steps, the node receives zero or more messages from
other nodes that tell it an input neuron spiked. The node stores these incoming
messages as a combination of the originating input neuron and the time that
the message was received. Note that by using the time a message is received we
allow the clocks of different neurons to be unsynchronized. Using the activation
of the input neuron, and possible incoming or stored messages, the node updates
the activation of its output neuron.

We interpret the activations of output neurons as the evidence that a node
has gathered for the claim that an agent is currently present at the location
of the node in the environment. The higher the activation of the neuron, the
more evidence the node has gathered for the claim. Thus we track agents by
making sure that at all times, every node knows whether an agent is present at
its location in the environment or not.

Thus, every node performs the exact same task of gathering evidence, but
is responsible for its own location in the environment. In this way, the tracking
algorithm is built up in a truly distributed way: there is no single that performs
more computation, has more responsibility, or has to collect more data than any
other node in the network.

We are now ready to define the activation function of output neurons. Note
that for the tracking task, this is the only component of the neural network
that still needs to be defined. We have already defined the neural network’s
architecture and connectivity, and we do not yet introduce a learning procedure.

3.2.3 Basis

As basis for updating the activation of output neurons we take a linear activation
function. The activation A of output neuron i at time step t is the sum of
activations A of all connected input neurons j received at time t, multiplied by
the weight wij of the connection between i and j at time t. For the tracking we
do not need to have weights associated with connections, but we will later on
for the prediction task. Thus, we introduce them now, and simply keep them
fixed on a value of 1 for now.

Ai(t) =
n∑

j=1

Aj(t) ∗ wij(t) (3.1)
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Let us look at the interpretation of this activation function. Suppose the
sensor of node A senses an agent at time t = 1. It sets the activation of its
input neuron to 1, broadcasts a message, and then updates the activation of its
output neuron. If no other node senses an agent at time t = 1, the activation
of the output neuron will be 1. Suppose the message that node A broadcasts is
received by a node B, located five meters away from node A, also at t = 1. Node
B will then also update the activation of its output neuron, and if it receives no
other messages, the activation of its output neuron will also be 1. Thus, node
A and B gathered the same amount of evidence at t = 1, while it was node A
that sensed the agent.

The next time step, the activation of the output neuron will be reset, and
thus the effect of the sighting of the agent at t = 1 is gone. Thus, if at t = 2 no
sensor sense the agent, the output neurons of node A and B again gather the
same evidence. However, since node A did sense the agent at t = 1, we can be
sure that it still is at least in the vicinity at t = 2.

Thus, we can define two problems arising from equation 3.1: (1) nodes forget,
from one time step to the next, that an agent was near, and (2) nodes treat
every sighting of an agent they receive a message about as full evidence that
the agent is at their location.

3.2.4 Memory

We solve the first problem by giving output neurons memory. Every time step,
we let output neurons retain a portion of its activation of the previous time
step. This means that evidence that was gathered at some time step does not
become void instantly, but rather decays in relevance over time. We do this by
introducing a decay-factor 0 < γ < 1 to the activation function, that reserves a
portion of the activation of the previous time step (see 3.2a). We can rewrite
this recursive definition to a non-recursive one by summing over all time steps
t′ starting at t′ = 0 up to t′ = t, and multiplying the input from every time
step by the appropriate factor γt−t′ (see 3.2b). In this alternative definition, it
is clear that the effect of every individual input spike on the activation of the
output neuron is maximal when it arrives, and then decays. A decaying effect
of individual spikes is also used in spiking neural networks, though the shape
of the decay function differs. We will adopt this latter definition because it will
allow us to solve the second problem mentioned above in a straightforward way.

Ai(t) =
n∑

j=1

Aj(t) ∗ wij(t) + γ ∗Ai(t− 1) (3.2a)

Ai(t) =
n∑

j=1

t∑
t′=0

Aj(t′) ∗ wij(t′) ∗ γt−t′ (3.2b)

Computationally, equation 3.2a is less expensive, since nodes will only have
to preserve the activation of the output neuron into the next time step. Equation
3.2b requires nodes to store all messages it ever receives, which will quickly
become infeasible because we assume nodes to be able to store only a limited
amount of data. However, because we defined 0 < γ < 1, if t− t′ becomes larger
for a particular message, γt−t′ will become smaller and approximate 0. Thus,
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it is not necessary to store messages forever. In fact, if we define a threshold
on how small we allow γt−t′ to become for a particular message, we have a
clear and decisive rule for how many time steps messages have to be preserved,
which depends only on γ. However, since how big an issue this is depends on
the choice of hardware for implementing the network, we will not define such a
threshold here.

3.2.5 Delay

Though equation 3.2b gives the output neurons a form of memory, the second
problem we identified is still present. If the input neuron on node A spikes, the
output neurons of nodes A and B still treat this spike in the exact same way.
This is a problem, because if node A saw an agent, this means the agent is near
node A, and not near node B. However, if node B is not very far away from node
A, a sighting at node A could indicate that the agent will be at node B some
time in the future. To illustrate this, consider the following situation. Node A
is located at the beginning of a corridor with a length of five meters, and node
B is located at the end of the corridor. If node A sees the agent, and the agent
walks in the direction of node B, then the sighting of node A indicated that the
agent will be at the location of node B some time in the near future.

Thus, when an input neuron spikes, the impact of the corresponding message
on the activation of an output neuron should be maximal when the agent may
be expected to arrive at the output neurons. We incorporate this by introducing
a delay factor δ for each pair of input and output neuron, that reflects how long
it would take an agent to travel from the location of the input neuron to the
location of the output neuron. This delay factor causes the impact of a spike
of the input neuron on the activation of the output neuron to build up over
δ time steps. Call v the move speed in meters per second of agents, dij the
physical distance between an output neuron j and input neuron i, and T the
size of individual time steps in seconds. Since we assume that the move speed of
agents is known beforehand, and that nodes can determine the physical distance
they are apart, we can then define the delay factor δij between i and j as:

δij =
dij

v ∗ T
(3.3)

The activity updating function then becomes:

Aj(t) =
n∑

i=1

t∑
t′=0

Ai(t′) ∗ wij(t′) ∗ γ|t−t′−δij| (3.4)

If we compare this activation function to the Spike-Response model intro-
duced in chapter 2, we see that it is an activation function that consists of only
an ε kernel. The ε kernel itself is quite distinct from the one introduced in equa-
tion 2.7b however. One reason for this is that our kernel neatly incorporates
delays between neurons, whereas the kernel in equation 2.7b does not. More-
over, as we will further explore in chapter 5, our kernel is computationally much
less expensive.

To track successfully, the algorithm should be aware of the location of an
agent as much as possible. This means that (1): the output neuron of the node
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that is nearest to the agent should have a high activation, or, in terms of inter-
pretation, enough evidence to conclude that the agent is present at the location
of the node. And (2): that output neurons of nodes at locations where no agent
is present should not have a high activation, or, in terms of interpretation, not
enough evidence to conclude that the agent is present.

Thus, we introduce a threshold θ that determines how high the activation
of an output neuron must be for it to conclude that an agent is present. If the
activation of an output neuron is equal to or higher than θ during some time
step, the neuron spikes. Note that this use of a threshold is identical to the
way in which neurons in spiking neural networks spike. However, our activation
function does not depend in any way on the last time a neuron has spiked, as
in spiking neural networks.

The actual value that θ should have depends on a number of factors. The
factors include the theoretical maximal activation a neuron is able to achieve,
the typical activation an output neuron will achieve when an agent is present.
Other factors are specific demands on the performance of the system. We shall
explore this issue further in chapter 4, when we will test the performance of the
algorithm in a simulation environment. For now we will use an example to illus-
trate how the algorithm is able to successfully track agents in an environment.

Example 1. Imagine a mini-environment measuring three by two meters, where
each square meter in the environment contains a node. An agent moves about in
this grid-world, each time step occupying exactly one square meter, and moving
about with a speed of one meter per second. The agent can only walk horizontally
and vertically. This is illustrated in Figure 3.1.

Figure 3.1: An agent moves about in a grid-world environment with a speed of
one meter per second.

Now suppose we have set our decay factor γ to 0.5. The distance between
nodes is the Manhattan distance2 between them. Suppose the agent started walk-
ing at t = 1. We will now compare the activations of the output neuron at
squares (3, 1) and (2, 2), to see if indeed the output neuron at (3, 1) has a higher
activation than the output neuron at (2, 2) at t = 3. From Figure 3.2 we see
that the three inputs all have their maximum impact on (3, 1) at t = 3, together
delivering an activation of 3. On (2, 2) however, the maximum effect of the last
input is delayed, causing the activation of (2, 2) at t = 3 to be smaller than that
of (3, 1). Thus, with 2.25 < θ ≤ 3, we would have the desired effect of output
neuron (3, 1) spiking, and neuron (2, 2) not spiking.

2The Manhattan distance measure is inspired by a grid layout of the environment, where
one can only walk horizontally or vertically. This typically is the case in many American cities,
where streets are aligned in a grid-like way, and the squares between streets are buildings. The
Manhattan distance between two vectors is calculated by summing over the absolute distances
between all components of the vectors.
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Figure 3.2: Left: the effect that the input neurons at location (1,1), (2,1) and
(3,1) have on the output neuron at location (3,1). Right: the effect these input
neurons have on output neuron (2,2).

3.3 Prediction

In this section we will present a learning procedure that will allow the sensor
network to predict the movements of agents in the future.

3.3.1 Related Work

We have introduced prediction as a task that is necessary for the system to
be able to perform higher level tasks such as controlling the environment and
geofencing. In the literature, prediction of the movements of agents is often
introduced as a means to reduce power consumption of nodes. If nodes can
predict the course of an agent, they can alert nodes along the trajectory of the
inbound agent. Thus, nodes need only sense their environment if an agent is
inbound, saving energy.

One frequently used strategy for predicting the movements of agents is to
apply linear or polynomial curve fitting on recent geographical positions of an
agent. This results in a trajectory that the agent is predicted to travel in the
near future. One assumption that has to be made for this strategy to work is
that nodes know at least the physical location of other nodes, relative to their
own physical location. Another assumption is that agents always walk in a
straight line or in a higher order curve. Though this last assumption may be
true in open environments like a forest or a desert, it is typically not true in
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buildings or cities, where the environment forces agents to make a lot of turns.
In [19] a different approach was taken, that would solve this problem. The

observation was made that agents typically have a fixed movement pattern or
motion model. The motion model of an agent is a model specifying the behavior
of the agent in the environment. It could for instance include information on
sequences of locations the agent will visit, information on how long the agent
will take to travel from one location to another, or at what specific time an
agent will travel a specific route.

The motion model of a bus for instance, could specify what route it will
travel in a city, and at what time it will arrive at specific locations on the route.
The motion model of people in a factory could specify that people walk between
their work space and the canteen at fixed times during the day.

Thus, a method was introduced to learn the particular motion models of
agents, and to spread these patterns through the network so that nodes could
predict the movements of agents. It was assumed that agents would themselves
gather detailed information on the patterns they travel, for some period of time,
and deliver this information to a series of supernodes, located at the outer ring of
the network. These supernodes would apply a data-mining technique to extract
the patterns from the data, and disseminate these patterns to the rest of the
sensor network. The assumption that agents will gather information themselves
may be feasible when the agents are buses that can easily be outfitted with the
required technology. But in an environment where the agents to be tracked are
animals, or enemy military forces, it is not.

3.3.2 Our Approach

To enable the algorithm to predict the location of agents in the future, we will
introduce a learning procedure that will allow the algorithm to learn limited
motion models of agents. The motion models we learn are limited because they
only specify whether agents travel from one location to another location. We do
not need to take into account the time they will take to travel from one location
to another, because we have assumed we know the move speed of agents and
the distance between nodes.

To see how the learning of motion models will allow for prediction, we first
have to define what counts as a prediction in our algorithm. Recall that if a
sensor senses an agent, the corresponding input neuron has its activation set
accordingly, and that the node sends a message to other nodes. The output
neurons of other nodes then use this message to update their own activity. We
had already observed that the receiving output neurons should not interpret
this message as meaning that an agent is present at its location right now, but
rather that an agent may be present some time in the future. Thus, we may
view the message that is sent by a node to other nodes when its sensor senses
an agent as a number of predictions equal to the number of receiving nodes.

It may be obvious that a great deal of these predictions are wrong. One
obvious problem that causes this is that the messages that nodes send go in
every direction, while an agent does not. However, since we assume that nodes
broadcast their messages, we can not cull these wrong predictions by limiting the
amount of recipients of a message. We can, however, let output neurons learn
to ignore messages from sensors that consistently provide wrong predictions, by
reducing the weights of connections with the corresponding input neurons.
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By initializing the weights of connections to 1, we have implicitly assumed
that agents can and will move from one node to any other node that is near. If
we let every individual node learn, for each neighboring node, whether agents
travel from the location of the neighboring node to its own location, we obtain
a distributed motion model. For every connection between an input neuron and
an output neuron, a weight of 1 means agents do travel from the location of the
input neuron to the location of the output neuron. A weight of 0 means agents
do not travel from the location of the input neuron to the location of the output
neuron.

3.3.3 Learning Procedure

In chapter 2, we have seen the learning procedure called STDP. We will imple-
ment a similar learning procedure. We would like to strengthen connections over
which correct predictions are sent, and weaken connections over which incorrect
predictions are sent. We say a prediction is correct if before the effect of the
corresponding message on the activation of the output neuron has worn out, the
output neuron has spiked. We say a prediction is incorrect if the output neuron
did not spike before that time.

We can now introduce a limit τ on how small the effect of a message on
the activation of the output neuron may become, such that we still call the
prediction successful. In combination with the decay-factor γ, this τ leads de-
terministically to a time window in which predictions will be called successful.
If a sensor senses an agent, and thus the activation A of the corresponding input
neuron j is set to a value of 1 at time t, strengthen the connection between j
and an output neuron i if i spikes before t + δij + log τ

log γ .

If Aj(t) ≥ 1

{
strengthen wij if Ai(t′) > θ for some t ≤ t′ ≤ (t + δij + log τ

log γ )
weaken wij otherwise

(3.5)
One major difference with the STDP learning method introduced earlier is

that in STDP weight modifications only occur if both the pre and the postsy-
naptic neuron spike (i.e. both the input and the output neuron). In our learning
procedure, spiking by the presynaptic neuron, or input neuron, is enough for a
weight modification to occur. This is called presynaptic gating [24]. A second
major difference with STDP is that in our learning procedure the relative timing
of pre and postsynatpic spikes does not determine the size of the modification,
whereas in STDP it does.

Instead, we define the strengthening and weakening functions such that the
weight itself will determine the size of a modification. Reason for this is that
it will allow us to define such a strengthening and weakening function that the
only stable values that weights can converge to are 1 and 0. Thus, a weight
that converges to a value of 1 indicates that agents do walk the path from the
location of the input neuron to the location of the output neuron, while a weight
of 0 indicates that they do not. This allows straightforward prediction, based on
the learned motion models, while weights that settle on a value of for instance
0.5 would require additional interpretation.

Thus, we introduce the following strengthening (equation 3.6a) and weaken-
ing (equation 3.6b) functions, with 0 < σ ≤ 1 and 0 < ω ≤ 1 parameters that
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determine the force of the functions. Note that we omit the ij suffix of weights,
since these functions do not depend on it.

w(t + 1) = w(t) + σ ∗∆w(t) (3.6a)
w(t + 1) = w(t)− ω ∗∆w(t) (3.6b)

Where:

∆w(t) = w(t) ∗ (1− w(t)) (3.7)

In Figure 3.3(a) the ∆ function of equation 3.7 has been drawn. As one can
see, the form of this function ensures that weights with a value of around 0.5
will cause a high delta value, making it impossible for them to stabilize. Rather,
under the influence of many incorrect predictions they will quickly converge to a
value of 0, and under the influence of many correct predictions they will quickly
converge to a value of 1.

In Figure 3.3(b) the strengthening (solid line) and weakening (dashed line)
have been drawn for σ = 1 and ω = 1 in recursive form. One can see that only
if the amount of correct and incorrect predictions this weight is influenced by is
equal, the weight will not converge. This is because σ and ω have been set to
the same value, and thus, these values can be used to bias the weight to allow
more or less incorrect predictions before converging to 0.

One last thing remains to be said. For weights that have a value between
0 and 1, our learning procedure implements 0 and 1 as soft restraints on the
possible values a weight can attain, as introduced in chapter 2. We have thus
far said we would initialize our weights to a value of 1, but with this learning
procedure, a weight of 1 not be able to change. Thus, to actually make the
learning procedure work, we will have to initialize the weights to a value a tiny
bit smaller than 1, for instance 0.99.

Again we will illustrate the working of the learning mechanism with an
example.

Example 2. We assume the same scenario as in example 1: an agent walks
in a grid like environment from (1, 1) to (3, 1), and exits the environment there.
Thus, while the output neuron on (3, 1) will spike at t = 3, the output neuron
on (2, 2) will not, despite receiving some input, as we have seen in example 1.
We will now assess the consequence this has on the weights of the connections
between the input neuron on (1, 1) and the output neurons on (3, 1) and (2, 2).
We assume that σ = ω = 1.

At t = 3 the output neuron on (3, 1) spikes, and since the input neuron at
(1, 1) had a part in that, the connection between the two is strengthened:

w(3,1)(1,1)(4) = w(3,1)(1,1)(3) + w(3,1)(1,1)(3) ∗ (1− w(3,1)(1,1)(3))
0.9999 = 0.99 + 0.99 ∗ (1− 0.99)

Simultaneously, as the output neuron on (2, 2) does not spike, the connection
between it and the input neuron on (1, 1) is weakened after the effect of the input
form (1, 1) has decayed beyond τ :
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(a)

(b)

Figure 3.3: Delta function (a) and the strengthening and weakening functions
for σ = ω = 1 (b).

w(2,2)(1,1)(6) = w(2,2)(1,1)(5) − w(2,2)(1,1)(5) ∗ (1− w(2,2)(1,1)(5))
0.9801 = 0.99 − 0.99 ∗ (1− 0.99)

If the agent consequently only walks this path in the environment, in the limit
the weight between (3, 1) will become 1, and the weight between (2, 2) and (1, 1)
will become 0. Thus, the output neuron at (2, 2) will learn to ignore the input
neuron at (1, 1), causing the network to generate fewer incorrect predictions.

3.4 Identification

We will now present an extension of the algorithm so that it is able to recognize
a number of classes of agents (for instance: patient, nurse, guest). The current
algorithm can then be seen as the special case where there exists only one class
of agent. We assume for now that the amount of different classes that may be
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present in the environment is known beforehand. Later, in chapter 6, we will
discuss this assumption and give ideas on how to relax it.

3.4.1 Related Work

Identification without using identifying senors is in the literature often presented
as a task of classifying agents into one of several classes of agents. Two main
observations are used to do this. The first observation is that different classes of
agents tend to cause different types of sensor readings [41]. A wheeled vehicle,
such as a car, will for instance cause a significantly different reading on a seismic
sensor then a tracked vehicle, such as a tank. If one is to use the different types
of sensor readings to classify agents, one has to verify that different classes
of agents indeed do cause different types of sensors readings. This may be a
valid assumption for sensors such as seismic sensors, cameras and microphones.
However, when employing binary sensors it is simply impossible for sensors to
make classify agents based on the type of sensor reading they cause.

The second observation is an extension of the observation we mentioned ear-
lier: that agents will typically have a motion model according to which they
move through the environment. Different classes of agents will typically have
different motion models, meaning that the patterns in which they move through
the environment are different [37]. Thus, if one can identify the specific move-
ment dynamics that an agent is exhibiting, one can use this to determine the
class of the agent. The inverse is also true: if one knows the class of an agent,
one can use its motion model to predict where the agent is going.

In [37], the identification task was solved by assuming that the motion models
of all classes of agents that may be in the environment is known beforehand. It
may in some settings be possible to know all these motion models beforehand:
if one wants to track buses in a city, then indeed their particular routes are
known and available. However, programming all these motion models into the
system beforehand deals a heavy blow to the ad-hoc deployability of the system.
Assuming that nodes can not store the entire model for every class of agent, one
has to give every node a particular part of every motion model that corresponds
to the node’s geographical position.

3.4.2 Our Approach

Before our algorithm will be able to deal with identity as a property of agent,
we will have to introduce the notion of different identities into the algorithm.
We do this by giving both input and output neurons a separate activation for
every known identity. Also, every connection between input and output neuron
will have a separate weight for every identity. Alternatively, we could have
introduced for every node a separate input neuron and output neuron for every
identity, and connect only pairs of input and output neuron that have the same
identity. The two are equivalent, but we shall adopt the former method to
preserve the idea that every node implements one input and one output neuron.

As we already use a motion model to predict the movements of agents,
we will also use motion models to identify agents. Recall that the algorithm
learns distributed motion models by settings weights to 0 or 1. As we now have
separate activations and weights for every known identity, we can now learn a
motion model for every identity. This way, if an agent walks according to the
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motion model of some identity, the activations of the output neurons for that
identity will become high enough to spike. We will elaborate on how this works
below.

First we need to decide how to get the motion models of different classes of
agents into the algorithm. As we have discussed above, though it is possible to
assume the motion models are known and to program them into the network,
this is highly undesirable. We would rather employ our learning procedure to
let the algorithm learn the motion models. However, for the algorithm to be
able to learn the motion model for a specific identity, it need to know first which
agents are of that identity. Thus we are faced with a problem: we would like
the algorithm to learn the motion models of agents so that it is able to identify
them, but to do that, it needs to know the identity of agents.

We solve this problem by making a minimal concession to the design de-
cision of using only binary and anonymous sensors. We will assume that in
the environment at least one sensor is temporarily available that can in some
way determine the class of an agent. When an agent passes an identifying sen-
sors and is identified, we will associate the path the agent consequently walks
to its identity. Thus, we essentially introduce a supervised learning phase for
the identification task. After some time all motion models are learned and the
identifying sensors are no longer needed to identify agents.

Adding even one identifying sensor goes against the argumentation against
the use of identifying sensors we gave in chapter 1. However, we are faced
here with the fundamental problem that we need some information on the basis
of which we can identify agents. Though people may feel adding a single or
maybe a few identifying sensors is a violation of their privacy, it is probably less
intrusive than having to obtain the motion model of people manually. Thus,
it appears that there is no free lunch when it comes to identifying agents, and
one will have to make the decision if being able to identify agents is worth
temporarily adding an identifying sensor to the network.

3.4.3 Introducing Identity

Giving every input neuron an activation for every known identity allows us to
neatly incorporate the newly introduced identifying sensors in the algorithm.
We assume that the identifying sensors are more reliable in their measurements
than the anonymous sensors, and thus, if an identifying sensor senses an agent,
the activation of only the sensed identity is set to θ. This means we assume that
if an identifying sensor senses an agent, this alone is enough evidence for output
neurons to conclude that an agent is present. If an anonymous sensor senses
an agent, the activation of all identities are set to 1, signifying that the sensor
“doesn’t know” the identity of the agent. If the sensor of a node now senses an
agent, a vector containing the activations for all identities of the input neuron
is broadcasted.

We update the activation function of output neurons of equation 3.4 to
incorporate the newly introduced identities. To calculate the activation A of
output neuron i at time t for identity id, we now sum only over the activations
for that same identity and multiplied by the weights for that same identity.
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Aid
i (t) =

n∑
j=1

t∑
t′=0

Aid
j (t′) ∗ wid

ij (t′) ∗ γ|t−t′−δij| (3.8)

We now say an output neuron i spikes at time t if for some identity id,
Aid

i (t) ≥ θ. Thus, if the activation of an output neuron for a specific identity is
higher than the threshold, the output neuron has gathered enough evidence to
conclude that an agent of that identity is present. By allowing output neurons
to spike for any number of identities at the same time, neurons can identify
agents, if they spike for only one identity. They can also detect an agent, but be
in doubt about the identity, if it spikes for some identities. If an output neuron
detects an agent but has no information at all on the identity of the agent, it
will simply spike for all identities.

Because we have only assumed the presence of some identifying sensors,
the majority of sensors will still be anonymous. With equation 3.8, actually
identifying an agent will only be possible as long as it is sensed by an identifying
sensor. This is a problem because the identity of an agent doesn’t change as
it moves through the environment. If some output neuron gathered enough
evidence for the claim that an agent of identity id is present, we could say that
output neuron “knows” the identity of the agent. We would like subsequent
output neurons that track the same agent in the future to also know the identity
of the agent, even though it may not receive any input from an identifying sensor.

3.4.4 Propagating Identity

We accomplish this by letting output neurons share the information they have
concerning the identity of an agent. We add lateral connections between two
output neurons if they are implemented by nodes that are within each other’s
broadcasting range. When an output neuron i′ spikes for one or more identities
at time t, we denote the set of identities it spikes for by id+

i′ (t), and the set
of identities it does not spike for by id−i′ (t). We let the spiking output neuron
inhibit the activation of identities in the set id−i′ (t) of connected output neurons
i. This way, for connected output neurons, the activations of the identities in
the set id+

i′ (t) will be higher than the activations of the identities in the set
id−i′ (t).

The lateral connections have a fixed weight of 1, as we do not in this thesis
define any learning procedure for these weights. Because we keep the weights
of lateral connections fixed, we do not need to introduce a separate weight for
every known identity. Also associated with every lateral connection between an
output neuron i and i′ is a delay factor δii′ , that is set according to equation
3.3. The inhibiting effects take on the form of a negative modification of the
activations of identities. This negative modification has a value of −1 multiplied
by the weight between the output neurons, and modified by the delay and decay
effects, as in equation 3.8.

Thus, to calculate the activation A of an output neuron i for identity id for
time t, we add to equation 3.8 the sum of inhibiting effects for that identity.
For all connected output neurons i′ and all past time steps t′, if id ∈ id−i′ (t

′), we
add −1 multiplied by the weight and modified by the decay and delay effects to
Aid

i (t).
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Aid
i (t)+ =

m∑
i′=1

t∑
t′=0

{
−1 ∗ wii′ ∗ γ|t−t′−δii′ ||id ∈ id−i′ (t

′)
}

(3.9)

3.4.5 Learning Identity Specific Motion Models

To be able to learn the motion models of different classes of agents, we need
to adapt the learning procedure. We now strengthen a weight wid

ij between
an input neuron j and an output neuron i for a specific identity id if the input
neuron spiked for id, and the output neuron also spiked for id within the defined
time interval. We weaken a connection if the output neuron did not spike for
the same identity. Thus we yield:

If Aid
j (t) ≥ 1

{
strengthen wid

ij if Aid
i (t′) > θ for some t ≤ t′ ≤ (t + δij + log τ

log γ )
weaken wid

ij otherwise
(3.10)

We shall again use an example to illustrate how the algorithm is capable of
propagating the identity of agents through the network, and how by doing this
the motion model of the class of agents can be learned.

Example 3. We assume the same grid-world environment as in example 1. The
agent now walks from square (1, 1) to square (3, 2), and we change the sensor
in square (1, 1) to an identifying sensor. We assume that there are two known
classes of agents, id1 and id2, and that the agent is of class id1. The nodes
on the squares (2, 1) and (3, 1) are within the broadcasting range of the node on
(1, 1), and thus they benefit directly from the identifying sensor. However, since
the nodes on square (1, 1) and (3, 2) are not within each other’s broadcasting
range, their neurons are not connected. Thus, the challenge is for node (3, 2) to
still be able to identify the agent.

Figure 3.4: An agent moves from square (1, 1) to square (3, 2) in four time steps.
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The output neuron on (3, 2) receives input from the input neurons on (2, 1),
(3, 1) and (3, 2). The delay factors make sure that each of these inputs have
their maximum effect the moment the agent is present at (3, 2), at t = 4:

Aid1
(3,2) = Aid2

(3,2) =
1 ∗ 1 ∗ 0.54−2−2 (from (2, 1)) +
1 ∗ 1 ∗ 0.54−3−1 (from (3, 1)) +
1 ∗ 1 ∗ 0.54−4−0 (from (3, 2)) = 3

Thus, based on only the input from input neurons, the output neuron on (3, 2)
is not capable of identifying the agent. However, since the output neurons at
(2, 1) and (3, 1) spiked for id1, the activation of output neuron (3, 2) for id2 gets
modified:

Aid2
(3,2) = 3+ =

1 ∗ −1 ∗ 0.54−2−2 (from (2, 1)) +
1 ∗ −1 ∗ 0.54−3−1 (from (3, 1)) = 1

Thus the activation of output neuron (3, 2) for id2 is hampered, output neuron
(3, 2) only spikes for id1, and is able to identify the agent. Because the output
neuron (3, 2) spikes for id1, wid1

(3,2)(3,1) and wid1
(3,2)(2,1) are strengthened, and be-

cause the output neuron at (3, 2) does not spike for id2, wid2
(3,2)(3,1) and wid2

(3,2)(2,1)

are weakened. If this happens often enough, eventually wid1
(3,2)(3,1) and wid1

(3,2)(2,1)

will become 1, and id2, wid2
(3,2)(3,1) and wid2

(3,2)(2,1) will become 0. If we then re-
move the identifying sensor, the node at (3, 2) is still able to identify the agent,
because the output neuron will not gather any activation for identity id2 at all.

3.5 Discussion

We have now introduced an algorithm that will operate on a wireless sensor
network and that will perform the tasks tracking, prediction, and identification.
The algorithm treats the wireless sensor network as one artificial neural network,
and borrows heavily from the field of spiking neural networks. Because of this,
the algorithm is distributed by design. We employ a learning procedure to learn
the motion models of agents, so that nodes do not need to be programmed with
data specific to individual nodes.

Nodes perform the tracking task by using the sensor readings from nodes in
their neighborhood to gather evidence for the claim that an agent is present at
their location in the environment. By implementing a spiking output neuron
that is connected to input neurons on nodes in the neighborhood, this is done
in a straightforward way.

To let nodes correctly predict the behavior of agents, we let nodes learn
the typical behavior of agents. To do this, we employ a learning procedure
that takes into account the timing of individual spikes, like the STDP learning
procedure that is often used in spiking neural networks.

To let nodes also identify agents, we introduced classes of identities to the al-
gorithm. We let nodes learn the typical behavior for individual classes of agents.
Moreover, we let nodes propagate the identity of detected agents through the
network, by adding lateral connections between output neurons.
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Chapter 4

Validation using Simulation

Now that we have proposed an algorithm for tracking, identification and pre-
diction, it is time to test its performance. Using a simulation environment, we
will verify that the algorithm is indeed capable of performing the mentioned
tasks. Moreover, we will verify the claim that our neural network algorithm is
robust to noise. In chapter 1, we have argued that robustness is a challenge for
applications for sensor networks, and used the robustness of neural networks as
an argument for viewing the sensor network as a physical neural network. Thus
we need to test if indeed our particular neural network algorithm is robust to
noise.

To assess the performance of the algorithm on the three tasks and its ro-
bustness to noise, we will compare it to a baseline performance. This naive
algorithm simply directly uses the measurements of the sensors as output, thus
rendering it incapable of predicting the movements of agents, and making it
highly susceptible to noise.

We shall first introduce the simulation environment, then present the exper-
imental setup, we will subsequently give the results and discuss them.

4.1 Simulation Environment

The simulation consists of an eight by eight grid, representing an environment.
The grid is divided into four rooms and a corridor to make it resemble a building;
the environments in the scenarios that drive the development of this algorithm
will typically be buildings. See Figure 4.1 for an image of the grid.

On each of the 64 squares of the grid we place one network node. The
sensors of the nodes can sense the presence of an agent, but only on their own
square. For the testing of the performance of the algorithm on the identification
task, we change the sensor of the node in the top left corner of the grid into an
identifying sensor. The identifying sensor can sense the identity of an agent, but
again only on its own square. The network nodes have a broadcasting range of
two squares in Manhattan distance as in example 1. This broadcasting distance
is not hampered by walls.

We introduce three agents, each with a different motion model. The “Ran-
dom Goal” agent randomly chooses a square in the environment and sets it as
its goal. It will then take a shortest route to its goal and, once it’s there, select
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Figure 4.1: The simulation environment: an eight by eight grid containing four
rooms and a corridor connecting the rooms.

a new goal, and so on. There are two “Wall Hugger” agents, which always stick
to the wall of the environment, and walk around in circles. One Wall Hugger
agent walks clockwise, the other walks counter-clockwise.

Since the motion model of the Random Goal agent contains a random ele-
ment, we expect that predicting the movements of this agent will be a hard task
for the algorithm. For this agent, the only fixed component in its motion model
is that it has to adhere to the layout of the environment. Thus, the performance
of the algorithm on learning to predict the movements of this agent, will show
us if the algorithm is capable of learning the layout of the environment from
the movements of an agent. We will use the two types of Wall Hugger agents to
test if the algorithm will indeed learn to identify agents based on their motion
models alone.

We let the simulation run in discrete time steps. Every time step, an agent
moves one square, either horizontally or vertically. Thus, agents are not allowed
to move diagonally, and do not stand still. Also every time step, the sensor of
every node takes a reading and the node broadcasts the activations of its input
neuron. Then the output neurons of every node calculate their activations,
and if an output neuron spikes, the node then broadcasts this for identification
purposes as introduced in chapter 3. Finally nodes may apply the learning
procedure to update the weights between input and output neurons.

Last, nodes may cause two types of noise in the environment. We introduce
two parameters, P-noise and R-noise, that govern this noise. The first, P-noise,
is the probability of a false positive, i.e. the chance sensors detect an agent
during a time step, even though no agent is present. This parameter is called
P-noise because it it highly related to the performance measure Precision, which
we shall introduce below. The second parameter, R-noise, is the probability of
a true negative, i.e. the chance sensors do not detect an agent during a time-
step, even though an agent is present. This parameter is related to the Recall
performance measure we shall also introduce below. Setting both P-noise and
R-noise to 0 creates a noise-free environment, setting them both to 1 turns the
sensors from detectors of the presence of an agent to detectors of the absence of
agents.
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4.2 Experimental Setup

In this section we will describe the experimental setup: the performance mea-
sures used to measure the performance of the algorithm, the parameter settings
of the algorithm we used, and the specific experiments conducted.

4.2.1 Performance Measures

To measure the performance of the algorithm on the tracking task, we introduce
three performance measures: Precision, Recall and PDistance. Both Precision
and Recall are measure well known in the field of information retrieval [42], and
we have tailored them to our needs. In information retrieval, Precision measures
what percentage of documents retrieved on a specific query indeed proved to
be useful. We define Precision to measure what percentages of spikes of output
neurons of the algorithm was correct. An output spike is correct if at the time
of the spike an agent was present at the location of the spiking output neuron.
Note that we do not take identity of agents into account here.

In information retrieval, Recall measures, for a specific query, what percent-
age of the existing documents relevant to the query were retrieved. We define
Recall to measure the percentage of time steps at which the algorithm was able
to determine the location of the agent. We say the algorithm was able to deter-
mine the location of an agent if at a particular time step, the output neuron of
the node at the location of the agent spiked.

Notice that there is a subtle interplay between Precision and Recall. Output
neurons could spike all the time to achieve a high Recall, but this would result
in a dramatically low Precision. Similarly, output neurons could spike only if it
is totally certain that the agent is present, achieving a high Precision, but this
would likely result in a low Recall.

PDistance is a new measure. It measures the average Manhattan distance
between the location of an agent at a specific time and the location of erroneous
spikes at that same time. For instance, if an agent is at square (2, 2) at time t,
and the output neuron at square (1, 1) spikes, this is an erroneous spike, and it
has a Manhattan distance of 2 to the actual location of the agent. The intuition
behind this measure is that how bad an erroneous spike is, is not a black and
white case, but rather depends on the distance of the erroneous spike from the
actual location of an agent. An erroneous spike in the near vicinity of an agent
might, in an actual application, at least for instance guide a nurse to the correct
room where an emergency takes place. In such a case the erroneous spike is less
of a problem than an erroneous spike that sends a nurse to the opposite side of
the building.

We introduce a fourth and final performance measure to assess the predic-
tion capabilities of the algorithm, called PredPrec. PredPrec measures what
percentage of predictions the algorithm makes prove to be correct. Recall that
in chapter 3 we defined a prediction to be the message a node sends to another
node if an activation of its input neuron is 1 or higher. We add to this definition
the constraint that the weight of the connection between the input neuron and
output neuron must be higher then 0.1. If this is not the case, we can effectively
say the output neuron has learned to ignore the input neuron, and thus we do
not count it as a prediction anymore. For defining when a prediction is correct,
we adopt the same definition as in the learning procedure introduced in chapter
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3. Thus, a prediction is correct if the receiving output neuron spikes before the
effect of the message has decreased to a value of τ .

4.2.2 Parameter Settings

We set the time steps in which the algorithm runs to be the same as the time
steps the simulation runs in. Thus, we say nothing about the actual duration
of individual time steps, and this is not required.

In the algorithm, we set γ = 0.5, σ = 1.0, ω = 0.25 and τ = 0.125. The
combination of γ and τ determines that a prediction at time t only is correct if
the receiving output neuron spikes before:

t + δij +
log τ

log γ
= t + δij +

log 0.125
log 0.5

= t + δij + 3 (4.1)

This window for correct predictions is relevant for the learning procedure,
as well as for the PredPrec performance measure. The combination of σ and
ω determines that the strengthening function is four times as powerful as the
weakening function. This means that every time a connection is strengthened,
this can be undone by roughly four applications of the weakening function. Thus
we are quite lenient to incorrect predictions, and only punish connections over
which consistently wrong predictions are being sent.

To set the δij for every pair of input neuron j and output neuron i, we define
the physical distance between the two as the Manhattan distance in the grid
between the nodes that implement the neurons. We then use equation 3.3 to set
every δ. Because the move speed of agents is one square per time step, and the
time steps in which the algorithm operates are equal to the time steps of the
simulation, this entails that the δij for every pair of input and output neuron is
simply equal to the Manhattan distance between the two.

Threshold θ

The threshold for output neurons to spike deserves some extra attention. We will
initially set θ to a value of 2.75 for every neuron. With the broadcasting range
of nodes we have defined, in principle an output neuron will receive a message
from three different input neurons when it should spike for the presence of an
agent (like the neuron on (3, 1) in example 1). Thus θ should have a value of
at most 3, and we set it a little lower to allow for minor deviations from this
typical scenario.

However, if we introduce noise into the environment, this typical scenario
will not be that typical anymore. Rather, if we add P-noise, output neurons
may receive messages from more than just three input neurons. Also, neurons
that should not spike, because the agent is not present at the location, may
still be able to acquire enough activation to spike. Thus, with the addition of
P-noise, one would like to have a higher θ.

If we introduce R-noise, it may happen that a neuron that should spike,
is not capable of gathering enough activation to do so, because some input
neurons fail to deliver input. Lowering θ to allow the output neurons to spike
in these situations will at least raise the Recall score of the network, but will
dramatically affect the Precision. With a lower threshold it becomes easier for
neurons that should not spike to still gather enough activation to spike.
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Thus, while testing the performance of the algorithm in a noisy environment
we need to adopt a variable θ. We set θ to a low base value, that allows neu-
rons to spike in case R-noise causes input neurons to fail to deliver input. If
output neurons have an activation higher than θ, they exchange their activa-
tions, determining which output neuron has the highest activation, so that only
that neuron would spike. While testing the performance of the algorithm in a
noise-free environment we use a fixed θ = 2.75.

4.2.3 Experiments

We will test the algorithm in runs of 1000 time steps. Each run, the environment
will be either noise-free (P-noise = R-noise = 0), contain P-noise (P-noise =
0.01, R-noise = 0) or contain R-noise (R-noise = 0.05, P-noise = 0). Each run,
only one agent will be present in the environment at any time, and the type of
the agent will not change during the run, except when we test the identification
performance of the algorithm. We will then alternate between the clockwise
and counter-clockwise Wall Hugger agents, and let them take turns in walking
one circle. Thus, only in the identification experiments do we instantiate the
algorithm for two known identities.

In all settings, we will test the algorithm both in untrained and trained
form. The trained algorithm for a specific experiment has been trained for 5000
time steps in a noise-free environment on the same agent as it will deal with
in the actual experiment. For the identification experiments the algorithm is
trained on the alternating Wall Hugger agents. During the actual experiments
the algorithm is “frozen”, meaning no learning procedure is applied.

In the experiments for tracking and prediction, we measure the Precision,
Recall, PDistance and PredPrec scores of the algorithm. We will compare the
scores of the algorithm with baseline performance scores on each tasks. For
tracking, the baseline performance scores are generated by a naive algorithm
where the output is identical to what the sensors measure. For prediction, the
baseline performance is generated by the untrained algorithm, since it is not
capable of predicting accurately yet.

For identification we simply assess whether the algorithm is capable of cor-
rectly determining the identity of the agent currently in the environment from
its motion model. Since there is no naive way of learning a motion model
to determine the identity of an agent, we will not compare the identification
performance of the algorithm to anything. We suffice to observe that a naive
algorithm would rely on the use of identifying sensors, and could thus only
identify an agent if it is sensed by an identifying sensor.

During training for the identification task, we turn the sensor in the top left
corner of the environment into an identifying sensor. Then we let the clockwise
and counter-clockwise Wall Hugger agents take turns in walking a circle, starting
from the top left corner. During the actual experiment, we shall let the agents
start in the bottom right corner of the environment, so that the algorithm will
have to use the learned motion models to identify the agents.
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4.3 Results

In Figure 4.2, the most important results for the tracking and prediction tasks
are shown. Not shown in the figure is the result that in a noise-free environment,
both the naive method, the untrained and the trained algorithm achieved per-
fect scores for all tracking experiments. Thus, for both the Random Goal agent
and the Wall Hugger agent, the naive method, the trained and the untrained
algorithm achieved a 100% score on both the Precision and the Recall perfor-
mance measure. This is not very surprising, since in this noise-free environment,
all necessary information to achieve these perfect scores is available.

(a) (b)

(c) (d)

Figure 4.2: Results from the experiments with the simulation environment.

4.3.1 Tracking

From Figure 4.2(a) we can see that training the algorithm has a positive in-
fluence on the Precision score of the algorithm, especially for the Wall Hugger
agent. That the effect is stronger for the Wall Hugger agent makes sense: since
its behavior is more predictable it is also easier for the algorithm to distin-
guish false sensor measurements from correct ones. From the score of the naive
method we can see that 40% of all sensors readings indicating the presence of
an agent was false. For the Wall Hugger agent however, the trained algorithm
was nearly able to completely nullify the effect of this noise.

We also see that the untrained algorithm was not capable at all of achieving
a good Precision score when faced with P-noise. However, from Figure 4.2(b)
we see that it at least acquired a much lower PDistance score than the naive
method. This means that the erroneous spikes by output neurons were quite
near the actual location of the agent. This makes sense: near the actual location
of the agent, a lot of activity already enters the network. An erroneous sensor
reading in the vicinity of the agent could then cause many output neurons in
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the vicinity of the agent to spike. In contrast, an erroneous sensor reading at a
location where little activity has entered the network will likely not cause any
spiking by output neurons. Thus, the untrained algorithm is capable of filtering
the extremely wrong sensor readings, and allows for tracking with room-level
accuracy.

From Figure 4.2(c) we can see that in the presence of R-noise the algorithm
is not able to achieve a good Recall score for the Random Goal agent in either
trained or untrained form, compared to the baseline performance. This is ex-
plainable. Since the behavior of the Random Goal agent is random to a high
degree, sensor readings simply are required to be able to correctly determine
the location of the agent. We see that in the case of the Wall Hugger agent,
the trained algorithm has learned the motion model of the agent, and thus does
not require all sensors readings any more to be able to determine the location
of the agent.

4.3.2 Prediction

Finally, in Figure 4.2(d) we can see the performance of the algorithm in trained
and untrained form in a noise-free environment for the Wall Hugger agent and
the Random Goal agent. As with the experiments on Recall, we can see that it
is hard for the trained algorithm to achieve a good score for the Random Goal
agent. This has the same cause: the motion model of the Random Goal agent is
random to a high degree, making it hard to predict its movements based only on
this motion model. A solution might be to base predictions also on the current
direction of the agent, as is done in many tracking algorithms, as described in
chapter 1. How to implement this is beyond the scope of this thesis.

We can see that for the Wall Hugger agent, predicting the movements based
on the motion model is much easier. Again, however, a higher score could be
achieved by also using the direction an agent is moving in. This is because the
agent walks the central corridor in both directions. As the algorithm only learn
this fact, it is incapable of predicting correctly when the agent is in the central
corridor.

4.3.3 Identification

As mentioned earlier, for the identification task no quantitative data were gath-
ered. Rather, we will analyze if the algorithm is capable of identifying agents in
an experiment. In Figure 4.3, we see part of the experiment, where the counter-
clockwise Wall Hugger agent has just started a fresh round. In the figure, the
top part is the actual path of the agent, the bottom part is the output of the
algorithm. In this output, every square is divided in two, each half representing
the activation for one identity of the output neuron on that square. The left half
is for the counter-clockwise Wall Hugger agent, the right half for the clockwise
agent. The darker the square, the higher the activity, and a completely black
square means the output neuron spikes. We have zoomed in on only the bottom
right chamber and part of the corridor.

As one can see, the first time step the algorithm does not output anything
significant yet. The activation of the output neuron at the location of the agent
is highest, but the identity is unknown. One can see, however, that the algorithm
already predicts that if the agent is the counter-clockwise agent it will go up,
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Figure 4.3: Top: the counter clockwise Wall Hugger agent takes the first three
steps of a fresh round in the environment. Bottom: the output the algorithm
delivers.

and that if it is the clockwise agent it will go left. During the second and third
step we can see the algorithm gathers conclusive evidence that it is indeed the
counter-clockwise agent. In Figure 4.4 the first three steps of a fresh round for
the clockwise agent are shown, and one can observe that the algorithm identifies
the agent in the same way.

Thus, the algorithm is indeed capable of identifying agents using their motion
model. The algorithm stores these motion models distributed over the weights
of connections. Every weight of a connection signifies whether the corresponding
class of agent travels from the location of the input neuron to the location of
the output neuron or not. Thus, the algorithm uses only the paths that agents
walk to identify them. In the central corridor this would lead to problems if
we had not introduced the procedure for the propagation of identities. This is
because both classes of agents we used walk the corridor in both directions.

Though we have now achieved significant identification results using only
the paths that agents walk, this is still only a preliminary result. The algorithm
currently is incapable of distinguishing agents that walk the same path but at
different speeds, or at different times. Further research could be directed at
incorporating such information.

4.4 Discussion

The algorithm we have proposed is able to successfully track agents in a noise
free environment. It is also capable of predicting the movements of agents, if
the motion model of the agent does not contain too many random elements.
We have conjectured that if the algorithm would somehow take into account
the current direction of motion of an agent, its prediction performance would
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Figure 4.4: Top: the clockwise Wall Hugger agent takes the first three steps of
a fresh round in the environment. Bottom: the output the algorithm delivers.

go up. The algorithm is capable of learning the motion model of agents, and
then using the learned motion models to identify agents. The motion models
the algorithm learns currently are far from complete (they do not contain in-
formation regarding speed of agents or the time they walk certain paths), and
we theorize that by expanding the learned motion models, the algorithm could
learn to identify better.

We have also tested whether indeed the algorithm is capable of dealing with
noise in the environment. We have seen that introducing a variable θ allows
the algorithm to deal with both P-noise and R-noise. However, the procedure
we proposed for nodes to determine θ may not be feasible in a real application.
We proposed that output neurons whose activation was higher than a low base
value of θ, would exchange their activation to determine which neuron had
the highest activation. In practice, this would require a lot of communication
between nodes, and this is not desirable, for reasons outlined in chapter 1.

We have also observed that using θ, a trade off can be made between Pre-
cision and Recall. A higher θ would increase Precision, but lower Recall, and
a lower θ would raise Recall and lower Precision. We claim that our algorithm
would do well for all practical purposes if θ is fixed at a low value, so that a high
Recall score is achieved, at the expense of Precision. This is because, as we have
observed, the erroneous spikes that cause a low Precision score are generally in
the vicinity of the agent. We have observed this from the PDistance scores the
algorithm achieved. Thus, a low Precision score of the algorithm mainly means
that the algorithm is not capable of tracking on a square meter scale anymore,
but rather on a room-level scale. This will generally be enough for the tasks the
system will eventually have to carry out.
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Chapter 5

Validation using Prototype

The algorithm we have proposed is distributed and scalable by design, which
makes it fit for implementation on a wireless sensor network. However, we have
to verify whether the tasks an individual network node has to carry out for
the algorithm are not too demanding for the network node. We have observed
that in a wireless sensor network, the network nodes typically have only limited
computational capabilities and can store only a limited amount of data. More-
over, its communicational abilities are also limited and costly in terms of power
consumption.

In this chapter we shall explore the practical feasibility of the algorithm by
creating a prototype of a sensor network implementing our algorithm. We will
test the prototype in a toy-setting, and will not implement the identification
part of the algorithm. The goal is not to test the performance of the algorithm
in a real world scenario, but rather to find and discuss issues that arise when
actually implementing the algorithm on a sensor network. We will first discuss
the environment and hardware used for the prototype. We will then discuss
how the algorithm was implemented on the network nodes. We will finish by
discussing the prototype and additional issues encountered.

5.1 Prototype

In this section we will describe the prototype that we have created. We will
first describe the environment and the agents used in the environment. We will
then turn to the hardware and the actual sensor network we created.

5.1.1 Environment and Agent

Using chipboard we created a closed environment: a square box measuring 1m25
by 1m25, divided into four rooms. Each of these rooms is connected to two other
rooms with a corridor. The floor of the environment is painted white, and with
black tape a line is created on the floor of the environment. For a birds-eye
picture of the environment see Figure 5.1(a).

As agent we use a small robot constructed using a LEGO Mindstorms NXT
kit (see http://mindstorms.lego.com for more information on the Lego Mind-
storms NXT kit, see Figure 5.2 for a picture of the robot agent.). The robot
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(a) Birds-Eye (b) Schematic

Figure 5.1: A Birds-Eye and a Schematic overview of the Prototype environ-
ment.

employs a light sensor to follow the black line on the floor of the environment.
We covered the agent with black paper, so that it would be clearly separable
from the rest of the environment by the various sensors we used in the sensor
network. The agent continually moved around in the environment in circles.

Figure 5.2: The robot that serves as agent and follows the line on the floor in
the environment.

5.1.2 Hardware

For the sensor network we used more LEGO Mindstorms NXT kits. Each of
these kits contains, amongst others, one NXT brick, a sound sensor, a sonar
sensor, a light sensor, a pressure sensor and three interactive servo motors (see
Figure 5.3 for pictures of some of these components). The NXT brick is a com-
putational device. It has a 32-bit ARM7 microprocessor and can be connected
to up to four different sensors and up to three motors, and is equipped with a
Bluetooth radio. With the Bluetooth radio a brick can in principle be connected
to up to three other bricks, but it is not capable of broadcasting messages to
these three bricks, let alone to all bricks in the vicinity.
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Of the sensors we will not use the pressure sensor, since it is essentially a
button, and we do not want to have the sensor network relying on an agent
pushing buttons. The light sensor measures the light intensity directly in front
of it. The sonar sensor uses ultrasonic waves to measure the distance to the
nearest object, up to a distance of 255 cm. Using multiple sonar sensors close
to each other may cause them to interfere, since one sensor may receive the
waves of the other sensor. The sound sensor measures the sound level in the
environment. However, to make it sensitive enough to soft noises, and to make
it insensitive to background noise, we outfitted the sound sensors with a cone
made of ordinary printing paper.

(a) Light Sensor (b) Sonar Sensor

(c) Sound Sensor (d) NXT Brick

Figure 5.3: Components of the Prototype Wireless Sensor Network.

5.1.3 Sensor Network

The use of the LEGO Mindstorms NXT kits is far from optimal for a wire-
less sensor network. As wireless sensor nodes, individual bricks are not cheap
(¿159.99 for a single brick, ¿299.00 for an entire kit), and they are incapable of
broadcasting messages. However, they were readily available, and programming
them is relatively easy, as many programming languages with communities al-
ready exist [43]. Thus the choice for using this hardware was made, though it
did require to somewhat alter the original idea of equipping every node with
one sensor and having every node implement one input neuron and one output
neuron.

The specific programming language we used to program the bricks, nxtOsek
(see http://lejos-osek.sourceforge.net/), only supports two bricks at a
time to be connected. Moreover, this connection can not be set up or broken
down at runtime. Thus, our sensor network is limited to two bricks. To each
of these two bricks, we connect a sonar sensor, a sound sensor, and two light
sensors. The sound and sonar sensors are each placed in a separate room, while
the light sensors are placed in the corridors.
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Thus we let each brick implement four input neurons, one for every sensor,
and two output neurons. We initialize the algorithm in such a way that the
output neurons are simulated to be located in a room. Though every output
neuron in principle is connected to every input neuron, since the two bricks that
together implement all input and output neurons are connected, we artificially
define a different connectivity. This is to make the prototype more interesting
and to make it somewhat more realistic. We define each output neuron to be
connected to the five input neurons that are nearest to it in terms of the distance
the robot has to travel from the location of the output neuron to the location of
the input neuron. See Figure 5.1(b) for a schematic overview of the environment
containing the implemented input and output neurons.

5.2 Algorithm

For the implementation of the algorithm, besides the parameter settings, an
important issue needs to be discussed: how to have individual nodes perform
the right action at the right moment.

5.2.1 Software Architecture

In the algorithm we proposed, three different tasks can be discerned that in-
dividual network nodes must perform. First, the nodes must use their sensor
to observe their environment, set the activations of input neurons accordingly,
and send messages to other nodes. Second, they must update the activations of
their output neurons, update weights, and send messages to other nodes if the
output neuron spikes. Third, nodes must constantly be able to receive incoming
messages.

Recall that we defined the algorithm to work in discrete time steps. During
a time step, a node would set the activations of its input neuron, update the
activations of the output neuron, apply the learning procedure and send mes-
sages. Implementing this would be trivial, but two challenges arise. We are
aiming at creating a system with no central component that coordinates when
nodes perform which task. Thus, the network will not be synchronized, and
nodes can not be sure when they will be receiving messages from other nodes.
This means that nodes must be able to receive a message at all times.

The second challenge is that taking one sensor reading every time step may
not be enough to reliably detect an agent if it is present. If we define individual
time steps to be one second, an agent may pass a sensor between two readings,
and thus go unnoticed. Thus one would rather have the node take multiple
sensor readings per time step. This also allows us to make sensors more ro-
bust to noise, as we can average over multiple sensor readings to determine the
activations of input neurons.

The nxtOsek programming language we used to program the bricks is based
on the Osek Real Time Operating System. Real Time Operating Systems
(RTOS) are designed to create applications that must work in real time. The
general focus is on getting tasks done before certain deadlines, rather than get-
ting as much done as possible. Thus, nxtOsek allows for the creation of tasks: a
set of instructions that is executed at fixed intervals. For each task, this interval
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can be defined, and the RTOS takes care of executing every task at the right
time.

We use this feature by creating three different tasks giving each of the three
tasks defined above a separate task in the application. Thus we can in a natural
way allow nodes to be constantly listening for incoming messages, while taking
sensor readings and updating the activations of output neurons on a less frequent
basis.

One downside of the nxtOsek programming language, is that it does not
allow for the dynamic allocation of memory. Since nodes have to store incom-
ing messages for some time, this is somewhat problematic. We solved this by
beforehand allocating a fixed amount of memory to the storing of messages.
Messages were deleted if they were the oldest message in memory and a new
message arrived, or by the constraint we had already introduced in chapter 3:
after log τ

log γ time steps.
In the prototype, we set the size of time steps to one second. In algorithm

5.1, the pseudo code for the algorithm as implemented on the bricks is depicted.
Note that every brick implemented four input neurons and two output neurons.
We achieved this by adding a loop over all input and/or output neurons in every
task, but we have omitted these loops to keep the algorithm more general.

Programming nodes using an RTOS thus makes dealing with the timing of
the execution of tasks a straightforward business. If a programming language
based on an RTOS is not available, the timing of the execution of tasks is
less straightforward, but not impossible. Instead of defining separate tasks and
defining for each task an interval at which it must be executed, one could could
create a loop in which tasks are executed if it is their time. In algorithm 5.2
example pseudo-code is depicted for this situation. It assumes that the node
has a system clock available with millisecond precision.

5.2.2 Parameter Settings

As mentioned, we set the size of time steps to one second. We set γ = 0.8,
θ = 4.5, σ = 1 and ω = 0.25. We define the δ values for every pair of connected
input and output neuron as defined in table 5.1, in the first column of every
output neuron. Though we have not used the usual procedure for setting the
δ values, as defined in equation 3.3, these δ values do approximate the time
it takes the agent to travel from the location of the sensor to the simulated
location of the output neuron.

5.3 Results and Discussion

After installing the entire sensor network in the environment, the agent was set
loose in the environment. The network was able to satisfactory track the agent.
Moreover, as depicted in table 5.1, after the system ran for some time, a number
of weights went from a value of 1 to a value of 0. Comparing the table of learned
weights to the schematic picture of the environment, we see that the network
has learned that the agent that was present in the environment always moved
in counter clockwise circles.

Though this is an important results, we can note two algorithm specific
points that need further investigation. While developing the algorithm, we have
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Algorithm 5.1 Algorithm using Tasks
1: TASK: Sensor Sampler
2: EXECUTE: 100ms
3: S ← SensorReading
4: if Counter = 10 then
5: Set Aself

j

6: if Aself
j ≥ 1 then

7: Broadcast Aself
j

8: Put Aself
j in StoredMessages1

9: end if
10: end if
11: Counter = Counter mod 10
12: Counter + +
13:

14: TASK: Activity Updater
15: EXECUTE: 1000ms
16: Calculate Ai

17: if Aself
i ≥ θ then

18: for all Aj ∈ StoredMessages1 do
19: Strengthen wij

20: Put Aj in StoredMessages2

21: end for
22: for all Aj ∈ StoredMessages2 do
23: if t(Aj) + δij + log τ

log γ < t(Current) then
24: Remove Aj from StoredMessages2

25: end if
26: end for
27: else {Aself

i < θ}
28: for all Aj ∈ StoredMessages1 do
29: if t(Aj) + δij + log τ

log γ < t(Current) then
30: Weaken wij

31: Remove Aj from StoredMessages1

32: end if
33: end for
34: end if
35:

36: TASK: Message Listener
37: EXECUTE: 50ms
38: if Message in Buffer then
39: Extract Aj from message
40: Put Aj in StoredMessages1

41: Remove message from Buffer
42: end if
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Algorithm 5.2 Algorithm making use of a giant loop
1: loop
2: CurrentT ime← SystemClockT ime
3: if (CurrentT ime mod 100) > Counter1 then
4: EXECUTE Sensor Sampler
5: Counter1 + +
6: end if
7: if (CurrentT ime mod 1000) > Counter2 then
8: EXECUTE Activation Updater
9: Counter2 + +

10: end if
11: if (CurrentT ime mod 50) > Counter3 then
12: EXECUTE Message Listener
13: Counter3 + +
14: end if
15: end loop
16:

17: METHOD: Sensor Sampler
18: S ← SensorReading
19: if Counter = 10 then
20: Set Aself

j

21: if Aself
j ≥ 1 then

22: Broadcast Aself
j

23: Put Aself
j in StoredMessages1

24: end if
25: end if
26: Counter = Counter mod 10
27: Counter + +
28:

29: METHOD: Activation Updater
30: Calculate Ai

31: if Aself
i ≥ θ then

32: for all Aj ∈ StoredMessages1 do
33: Strengthen wij

34: Put Aj in StoredMessages2

35: end for
36: for all Aj ∈ StoredMessages2 do
37: if t(Aj) + δij + log τ

log γ < t(Current) then
38: Remove Aj from StoredMessages2

39: end if
40: end for
41: else {Aself

i < θ}
42: for all Aj ∈ StoredMessages1 do
43: if t(Aj) + δij + log τ

log γ < t(Current) then
44: Weaken wij

45: Remove Aj from StoredMessages1

46: end if
47: end for
48: end if
49:

50: METHOD: Message Listener
51: if Message in Buffer then
52: Extract Aj from message
53: Put Aj in StoredMessages1

54: Remove message from Buffer
55: end if
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Neuron 1 Neuron 2 Neuron 3 Neuron 4
δ w0 w∞ δ w0 w∞ δ w0 w∞ δ w0 w∞

Sensor 1 10 1 0 10 1 1
Sensor 2 0 1 1 25 1 0 25 1 1
Sensor 3 10 1 1 10 1 0
Sensor 4 25 1 1 0 1 1 25 1 0
Sensor 5 10 1 1 10 1 0
Sensor 6 25 1 1 0 1 1 25 1 0
Sensor 7 10 1 1 10 1 0
Sensor 8 25 1 0 25 1 1 0 1 1

Table 5.1: Results from the Prototype experiment

assumed that only binary sensors were available. We defined binary sensors to
be sensors that are capable of only outputting a 0 or a 1 for every sensor reading.
However, none of the three types of sensors we used was truly binary. So long as
using the sensors is feasible from a cost and energy consumption point of view
this is not a problem. However, one does have to think carefully about how to
use the data the sensors gather. Since we have as of yet no way of using non-
binary sensor data in the algorithm, the data gathered by non-binary sensors
will have to be preprocessed. And while for a binary sensor the interpretation of
sensor values is straightforward (a 0 means no agent is detected, a 1 means an
agent has been detected), for non-binary sensors this is not so. In our prototype
we implemented a threshold on the value of each sensor readings, such that if
the reading exceeded the threshold, we interpreted this as a detected agent. For
the light sensor, this resulted in clouds suddenly blocking or unblocking the sun
could cause the sensor to detect an agent, while none was present. Thus, we
identify the preprocessing of raw sensor data as a point for further investigation.

The second point concerns the parameter settings of the algorithm. The
parameters used in this prototype were found by trying multiple settings until a
combination that worked was found. Though one can find reasonable settings by
analyzing the environment and the way the parameters of the algorithm interact,
no fixed procedure for doing this is available yet. It is highly undesirable to
try multiple parameter settings in a real application of the sensor network as
it would take a long time to reprogram all nodes multiple times. Thus, we
also identify the development of a standard procedure for the algorithm to
determine the optimal parameters at run time as a point for further research.
The algorithm could detect specific features of the network, such as the node
density, and use these to make an initial estimation of the correct parameter
settings. It could then try to optimize the parameter settings at run time.

A less algorithm specific point that deserves attention is the use of memory.
Depending on the specifications of the hardware used for the sensor network, it
may be necessary to minimize the amount of memory the algorithm needs. One
source of data that nodes have to store are the activations of input and output
neurons and weights of connections. Thus far, we have assumed that weights and
activations are stored as floating point values. However, with proper conversion,
it is possible to store them as bytes. Thus every weight and activation would
require only 8 bits to be stored, which depending on the size of floating point
values on the specific platform chosen, can be a significant saving.
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Chapter 6

Discussion and Conclusion

In this final chapter we will reflect on the work presented. We will discuss
to what extend the algorithm fulfills the three tasks we identified: tracking,
prediction and identification, and if the algorithm successfully deals with the
challenges we identified. Subsequently, we will present a number of possible
directions for future research. We will then conclude the thesis.

6.1 Tasks

Using five scenarios we identified three basic information gathering tasks that
an ambient intelligence system for institutionalized health care must perform.
These tasks were tracking, prediction and identification. For the tracking task,
every node that is part of the system has to be able to determine, at all times,
whether an agent is present at the location of the node in the environment. For
the prediction task, nodes have to be able to determine, at all times, whether
an agent is approaching the location of the node in the environment. For the
identification task, nodes have to be able, if they determine that an agent is
present at the location of the node in the environment, to also determine the
class of that agent.

The aim of the thesis was to develop a preliminary proposal for an ambient
intelligence system that can perform these three tasks. We have proposed to use
a wireless sensor network, and view it as a physical artificial neural network.
We have tested the algorithm for its performance on the three tasks using a
simulation environment.

We saw that on the tracking task the algorithm achieved a perfect score in a
noise-free environment. In a noisy environment, the algorithm did not achieve
perfect scores for tracking agents on the level of individual nodes, but did allow
for room-level tracking of agents. We have also identified the threshold θ for
output neurons to spike as a factor in the amount and type of noise the algorithm
can deal with.

For the prediction task, we proposed that the algorithm learns the typical
behavior of agents, and uses it to predict where agents are going. We saw that
before learning the algorithm generates a lot of wrong predictions, but that,
depending on the amount of randomness in the typical behavior of agents, this
number of wrong predictions could be significantly limited. A perfect score has
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not been achieved yet though, and thus improvements are needed. We will give
directions on this in the further research section.

For the identification task, we let the algorithm learn the typical behavior
of different classes of agents. By comparing the behavior an agent exhibits
to the typical behaviors, the class of the agent could be determined. We saw
that this worked quite well. However, to allow the network to learn the typical
behavior of classes of agents, we were forced to temporarily introduce at least
one identifying sensor. We have argued that the reason this was necessary was
a fundamental one, that could not be circumvented. In that light our solution
provided for a minimal intrusion on the privacy of agents.

Thus, we can say we have succeeded at creating a preliminary proposal for
an ambient intelligence system that performs the three tasks. The performance
of the algorithm is not yet optimal, and so improvements are needed. However,
as we will discuss in a bit, we have ideas on how to improve the performance
of the algorithm. Seeing how the approach we took was quite new, we can say
that the results are at least promising.

6.2 Challenges

We made two important design decisions that caused a number of challenges to
arise. First, we decided to use a wireless sensor network and second, we decided
to use only binary and anonymous sensors. We will now discuss whether the
identified challenges were met.

The first challenge we identified was energy consumption. Nodes in a wireless
sensor network are battery operated, and thus must use this limited source of
power in an economical way. In this thesis, we have not extensively treated
this issue, or how our algorithm deals with it, and this is an important point
for future research. However, we can say some things about this point. It
is generally accepted that for a wireless sensor node, communication is the
operation that consumes the most energy. Our algorithm only requires the
communication of data to nodes in the vicinity, and messages that need to be
send are never larger than a few bytes. Thus, we conjecture that the amount of
energy used on communicating will be limited.

The second challenge we identified was that any software architecture de-
veloped for a wireless sensor network must be distributed. We adopted the
paradigm of artificial neural networks, and viewed the entire sensor network as
a neural network. By defining only limited connectivity (i.e. the connectivity of
the neural network as equal to the connectivity of the sensor network) we have
inherited the property of distributedness from neural networks.

The third challenge was that a wireless sensor network needs to be self-
organizing. Nodes should not have to be programmed individually with data
that is specific to that node, such as data on the physical location of the node in
the environment, or application specific data. Our algorithm does not depend
on any node-specific information. Rather, we assume that nodes can identify
neighboring nodes and determine the distance to these nodes. We have given
ideas as to how this could be done. Our algorithm also does not require any
application specific data to be present at the nodes. Rather, nodes learn appli-
cation specific data, such as the typical behavior of agents, themselves.

The last challenge was that the algorithm would have to be robust to noise.
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In the simulation we tested the performance of the algorithm in a noisy envi-
ronment. While the scores of the algorithm were not as good as in a noise-free
environment, we saw that the algorithm still performed reasonably well, and
at least allowed for room-lever tracking of agents. However, to test the per-
formance of the algorithm under the presence of real noise, the algorithm will
have to be tested in a real world environment that is less limited than the one
presented in chapter 5.

6.3 Further Research

As mentioned already, work on this algorithm is not finished, and thus multiple
issues for further research can be identified. These issues can roughly be dis-
tinguished into two groups: issues pertaining to the algorithm itself, and issues
that go beyond the algorithm.

6.3.1 Algorithm Specific

The first issue concerns the assumption that agents move about in the envi-
ronment at a fixed speed, and that this speed is known. This is a limiting
assumption, since agents typically do not walk at a constant speed. Moreover,
the typical speed at which agents move may be used to identify agents: elderly
people typically walk slower than, for instance, nurses. Thus, it would be desir-
able to augment the algorithm such that it can deal with variable move speeds,
and can use these to identify agents.

One way to accomplish this would be to make the delay factors between
neurons dynamic. Recall that a delay factor essentially states how long an
agent is expected to take to travel from one neuron to another neuron. Thus,
delay factors are directly related to the move speed of agents. By using fixed
delays, we can only work with fixed move speeds. We could, however adapt the
learning procedure to also work on delays. Instead of only strengthening and
weakening connections, we could let nodes change the delays to better match
the time between receiving a message from an input neuron and arrival of the
agent. By introducing separate delays for individual classes of agents, we can
even use the typical move speeds of classes of agents to identify agents.

The second issue concerns the thresholds for neurons to spike. We have
until now assumed that these thresholds are fixed, but we also observed from
the simulations that a variable threshold is desirable. This was so that the
algorithm can correctly deal with noise in the environment. Exactly how a
dynamical threshold could be introduced in a meaningful and natural way is as
of yet unclear, and this will have to be researched. We suggest to look for an
answer again in the field of spiking neural networks, as dynamical thresholds
have been suggested there also [24].

Third, we have thus far only tested the algorithm on an environment in which
at most one agent was present at a time. In a real application, the algorithm
will have to be able to deal with situations where multiple agents are present
in the environment at one time, and possibly even close together. Thus, the
algorithm must be tested on the task of tracking multiple agents at the same
time. Possibly, the algorithm will require more work to be able to deal with
such situations.
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The last algorithm specific issue is the issue of energy consumption. As we
have stated, communication generally consumes more energy than computation,
and thus we have attempted to keep the amount of data that needs to be commu-
nicated by nodes limited. However, we have not incorporated any mechanisms
specifically for the conservation of energy. One example of such a mechanism is
putting nodes into a sleep mode if nothing is happening, and waking them up
if agents are coming. Energy consumption will have to be incorporated in the
algorithm in a more prominent way.

6.3.2 Beyond the Algorithm

As we stated in the introduction, the aim of this thesis was to propose an am-
bient intelligence system that can perform three tasks: tracking, prediction and
identification. We also stated that question of how to use this information in
a meaningful way was left open. This is, thus, an obvious issue for further re-
search. The information that the algorithm is able to gather now must still be
used somehow for the system to perform the higher level tasks that were de-
scribed in the scenarios in chapter 1. Thus, research will have to be conducted to
how specific actuators could be integrated into the system, and how the system
can relay information to human beings that are interested in the information.

The last issue for further research we identify here is to find or develop
a suitable platform to implement the algorithm. In our prototype, we have
implemented the algorithm on Lego Mindstorms NXT bricks, but we saw that
this platform was far from ideal. To select or develop a suitable platform, it is
necessary to construct a list containing all requirements that such a platform
should meet. One could think, for instance, of the minimal computational
power or storage capacity, but also specific communication protocols. One could
imagine that for the normal operation of our algorithm all nodes must be able
to broadcast messages, but that for reprogramming an entire network with a
new program version or during a network initialization phase, a directed form
of communication is required.

6.4 Conclusion

In this thesis, we have created a preliminary proposal for an ambient intelligence
system for institutionalized elderly care. Specifically, we proposed an algorithm
that can operate on a wireless sensor network. The algorithm performs three
tasks that are essential for the system to perform high level tasks; tracking,
prediction and identification. Moreover, the algorithm has some features that
are essential for any application that is developed to operate on a wireless sensor
network. The algorithm is distributed by design, self-organizing and quite robust
to noise in the input. We tested the performance of the algorithm in a simulation
environment and we made a first step towards a real implementation by creating
a prototype.

The novelty of the work presented in this thesis in twofold. First, this is
an attempt at creating an algorithm for tracking, prediction and identification
that is distributed, self-organizing, robust to noise, energy efficient and that
assumes only binary and anonymous sensors. As the field of wireless sensor
networks is still relatively young, how to best achieve these features is still
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subject of much research. Testimony to this are for instance the various projects
concerning wireless sensor networks that we have already briefly discussed in the
introduction. We feel that this work fits neatly in the field, because we have
proposed an algorithm that has some of these features by its very nature.

The second point of novelty of this work concerns the use of artificial neu-
ral networks. To our best knowledge, this is the first attempt at applying the
paradigm of artificial neural networks to the field of sensor networks. We be-
lieve that the combination of the two is a natural one: both neural and sensor
networks consist of many small units of computation that are connected in some
way and cooperate to achieve a task. We have seen that neural networks al-
ready possess many of the features that we identified to be requirements for
applications for wireless sensor networks. In this thesis, we have shown how the
two can be combined in a meaningful and straightforward manner.
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