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Abstract

This thesis discusses the application of Long Short-Term Memory Recurrent Neural Net-
works to identify electrical appliances based on the current they draw. An LSTM-model,
implemented using Tensorflow, is trained and validated using the PLAID-dataset. This
model achieves an average F1-score of 92% on a testing subset of the data, thereby im-
proving on the state of the art. The resulting model is robust to noise, and generalizes well
to previously unseen examples, provided the data are pre-processed to the correct format.
In conclusion, LSTMs are well-suited for the appliance identification problem, but the
amount of data and computing power required restrict their practical applications.
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Chapter 1
Introduction

This chapter serves as a general introduction to the thesis, providing the reader with the
context in which it should be considered. First, Section 1.1 describes the broader research
context this thesis should be considered in, after which Section 1.2 gives some examples of
possible applications. Then, Section 1.3 discusses why automatic appliance identification
is necessary, and Section 1.4 outlines the solution proposed in this thesis. Next, Section 1.5
lists the main research question and subquestions. Finally, Section 1.6 closes the chapter
by outlining the structure of the rest of the document.

1.1 Context
In recent years, as the potential dangers of global warming became more evident, many
people have started looking for simple but effective ways to save energy: by installing
LED-lighting, insulated glass, and smart thermostats, just to name a few examples. Si-
multaneously, the hype surrounding the so-called Internet of Things (IoT) has resulted in a
rapidly increasing number of devices capable of sharing their data via the internet. Smart
meters, for instance, are devices that measure the electricity consumption of a household
and can report energy consumption directly to the power supplier. The data measured by
such a device can also be leveraged to provide residents with some insight into what they
can do to reduce their energy consumption. Such a reduction would not only directly re-
duce the monetary cost, which is a good incentive for the users, but it would reduce the
user’s environmental footprint as well. At the time of writing, smart meters do not yet
provide such insight. Separate hardware and software are required for such functionality.

This can be done in two ways: either at plug-level, by installing hardware at the wall-
socket where a device is plugged in to measure the usage of each individual appliance
directly, or at meter-level, by measuring the aggregated signal at the meter, and using al-
gorithms to disentangle this signal into the individual appliance. Plug-level measurements
require relatively simple software, but, depending on the size of the building, a lot of ded-
icated hardware, whereas meter-level measurements require very complicated software
to identify individual appliances from a noisy, aggregated signal, a process called Non-
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Chapter 1. Introduction 2

Intrusive Load Monitoring (NILM), while the hardware used for measuring only needs to
be installed in a single location. A great deal of research has been done on NILM. For
an extensive list of early research in this field, refer to Heart (1995). A possible reason
behind the popularity of NILM over plug-level appliance identification is likely the cost of
the hardware required to perform plug-level measurements: these costs quickly becomes
too high to be feasible, especially for larger (e.g office) buildings. But with Crownstone,
the company for which the research surrounding this thesis was done, these cost and com-
plexity arguments may soon be a thing of the past.

Crownstones offer an affordable, easy-to-maintain, future-proof, and standardized way
of measuring plug-level data, but they do much more than this. They add the ability of turn-
ing any device on and off using one’s smartphone. They allow dimming of any dimmable
light bulb, again using just one’s phone. They add room-level indoor positional tracking,
which can be used, for instance, to automatically turn off the lights when a room is empty,
or turn off the TV and other specified devices when a person leaves the house. Such func-
tionality allows people to reduce their energy consumption in a simple and effective way,
without them having to take any conscious action once everything is set-up properly. The
next section describes some examples of scenarios where automatic device identification
can be useful. The list is by no means exhaustive, and serves merely to provide the reader
with some illustrations of use cases.

1.2 Example Applications

1.2.1 Enhanced device safety
As Crownstones are able to not only identify users, but their location (accurate up to ap-
proximately room-scale level) within the building as well, Crownstones can figure out who
is in a certain room at any given time. For instance, consider a scenario where an adult is
the garage, operating a dangerous power tool. When a child then enters the room, we may
assume the adult is aware of this, and will make sure the child does not get hurt. But if
the power tool is plugged in and turned on and a child enters the room without an adult
being present, we may want to switch off the power tool to prevent the child from hurting
themselves.

This scenario can be envisioned in a wide variety of different settings, and with a wide
variety of different appliances, such as the kitchen (e.g. blender), garage (e.g. circular saw),
or even the garden (e.g. lawn mower). In these scenarios, fast, accurate, and automatic
appliance identification is crucial, due to the vast differences between all these appliances,
and the fact that they may not be plugged-in constantly, or plugged into the same wall
socket consistently.

1.2.2 Power monitoring and energy saving
Crownstones are able to monitor the current and voltage passing through them, and can
therefore calculate the power usage of an appliance over time. By monitoring this power,
and reacting to any irregularities, Crownstones may, for instance, be able to prevent fires
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resulting from short circuit, provided the Crownstone knows which device is currently
plugged in, and what constitutes normal behavior for this type of device.

Similarly, by knowing exactly what device is plugged in, and what pattern of power
consumption is normal, a Crownstone can power down a device when it is not in active use.
Consider, for instance, a smartphone that is left to charge overnight, which reaches 100%
charge within an hour of being plugged in. A Crownstone may notice this, and cut off
the power to the charger, only to resume it for a short while (e.g. fifteen minutes) before
the user wakes up. This saves power, without any sort of user interaction, provided the
Crownstone knows which device is plugged in, and what pattern of power consumption
is normal for this type of device. The same idea can be applied to a TV that has been
in stand-by mode for a long time, a microwave that is only being used sporadically, or
a laptop that is left permanently plugged-in, but only needs to charge occasionally. And
while the aforementioned devices allow for power to be saved without any direct impact
on how they are used, recognizing the device that is plugged in means this power-saving
behavior can be avoided for devices that always need to be ready, such as alarms, doorbells,
or refrigerators.

1.3 Why Automatic Appliance Identification?
Currently, users can manually enter the type of device plugged into a particular Crown-
stone. This allows the software to take this information into account, and, assuming it is
done correctly for all Crownstones installed, would suffice to perform each of the example
tasks outlined below. Then why go through the effort of automating this process? What
can be gained from automatic appliance identification, when manual labeling is already in
place?

Some arguments for this automation are obvious. For instance, it is more customer-
friendly, as it saves the end user a step they would otherwise have to perform manually.
Moreover, research into the power behavior of various devices can be relevant in and of
itself, especially as smart wall sockets become more commonplace.

The key advantage of smart plugs, as opposed to dedicated smart appliances such
as smart lights, is their generality: the need to buy new smart appliances disappears, as
consumers can simply plug their existing devices into one of these smart plugs, thereby
adding much of the smart functionality of a brand-new, expensive smart product. This
added level of abstraction allows for a more consistent, general, and future-proof smart
home, but this generality does come at the cost of having to deal with the enormous variety
of devices out in the world: while a smart light bulb can know its own specifications, a
smart plug will have to deal with all sorts of devices, without a priori knowledge of the
devices’ properties.

This challenge calls for an algorithm that is general (i.e. able to extrapolate to new,
unseen appliances that belong to the same device category), and is able to identify quickly,
as people may plug different devices into wall sockets regularly. For instance, while the
refrigerator may stay plugged in to the same socket for years, a wall outlet above the
kitchen counter may see a blender, panini press, and microwave plugged in, all within less
than an hour.
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1.4 Proposed Solution
To allow Crownstones to perform automatic appliance identification, the author proposes
a Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) model (see Chap-
ter 2), trained using current data of various appliances. This type of model was selected be-
cause it is particularly well-suited for tasks involving time-series. The final model trained
for this thesis achieves state-of-the-art performance (see Chapter 5) on the PLAID dataset
(see Chapter 4), indicating that this approach is highly feasible.

1.5 Research Questions

Main research question
The main question this thesis answers is the following:

“Are LSTM-models well-suited for automatic appliance identification?”
To answer this question, an LSTM-network is trained using the PLAID Dataset (for

more on this dataset, see Subsection 4.2), and this model’s characteristics, such as its
accuracy, precision, recall, and F1-score are compared to existing solutions.

Subquestion 1
“What level of performance can be achieved using LSTM-models?”

The ideal result from this thesis is a classifier that performs better than existing meth-
ods, across the board. To answer this question, the LSTM-model is tuned and trained to
perform as well as possible on pre-existing datasets, and these results are compared to
those of existing classification methods.

Subquestion 2
“How does performance change when the data are modified in various ways?”

For instance, what happens to the model’s performance when stochastic noise is added
to the data?

Subquestion 3
“How well does the algorithm generalize to unseen examples?”

This is a standard question in the field of machine learning, but it has two interesting
aspects for this particular problem: 1. How well does the model generalize to new ap-
pliances within the same appliance class, and 2. How well does the model generalize to
known devices in different states?

1.6 Document Structure
The rest of this document is structured as follows. First, Chapter 2 explains the principles
underlying LSTM-networks. Next, Chapter 3 goes into the methods used for training,
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testing, and evaluation of the model, after which Chapter 4 describes the data used for this
thesis. Chapter 5 then discusses the results obtained. After that, Chapter 6 talks about
related literature, potential shortcomings, and possible future work. Finally, Chapter 7
rounds off the thesis with a brief conclusion.



Chapter 2
Long Short-Term Memory
Recurrent Neural Networks

This chapter explains the fundamental concepts behind LSTM-networks. First, Section 2.1
discusses their relation to RNNs, and the broader scope in which they should be consid-
ered. Then, Section 2.2 briefly describes how LSTMs work, after which Section 2.3 de-
scribes some of the earlier applications. Finally, Section 2.4 explains why the choice was
made to apply LSTMs to the problem of appliance identification.

2.1 RNNs
LSTMs, as briefly discussed in 1.4, are a type of Artificial Neural Network (ANN). They
are a specific type of RNN, in which information passing through the network has a cer-
tain level of persistence that is lacking in regular ANNs. This persistence makes RNNs
particularly well-suited for time-series data, as the network is able to remember input from
previous timesteps when looking at the current input, and change its decision accordingly.

Mathematically, this memory-like persistence can be thought of as follows:

hhht = Φ (Wxxxt + Uhhht−1) ,

where hhht is the network’s output (also hidden state) at timestep t, Φ is a non-linear activa-
tion function (such as a sigmoid, ReLu, or hyperbolic tangent function), W is the weight
matrix, similar to the one from a regular, feed-forward ANN, xxxt is the input at timestep t,
U is a weight matrix dictating how strongly the history from the previous timestep is fac-
tored in, and hhht−1 is the output (hidden state) of the previous timestep. Both W and U are
learned during the training process. Intuitively, this means the network can remember the
previous input (e.g. the letter q, in a model predicting text on character-level), and use that
information when predicting the next timestep (e.g. by making the letter u more likely).

As the number of timesteps between inputs grows, the persistence tends to grow weaker.
This is caused by the fact that new input is more important than the previous input, mean-
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Figure 2.1: This figure shows some examples of tasks for which RNN-networks are particularly
suitable. Real-world examples of these tasks include image captioning (one to many), text classifi-
cation (many to one), text-to-speech (many to many), and many more. (Image courtesy of Karpathy
(2015))

ing U will cause long-past input to slowly disappear over time. This phenomenon was
studied extensively by Hochreiter (1991) and Bengio et al. (1994), after which LSTMs
were invented to solve just this problem.

2.2 LSTMs
LSTMs were first introduced by Hochreiter and Schmidhuber (1997) to solve the problem
of long-term dependencies. As mentioned in Section 2.1, they are a type of RNN with
some modifications. An in-depth explanation of LSTMs is outside the scope of this thesis.
The reader is encouraged to read up on the details, as many excellent articles have already
been written on the topic (e.g. Olah (2015)). For completeness’ sake, this section provides
an overview of the fundamental concepts.

The key modifications between regular RNNs and LSTMs can be found in how the
hidden state is handled. Whereas regular RNNs simply multiply the current input xxxt and
the previous hidden state hhht−1 by their respective (learned) weight matrices, sum the re-
sult, and run that sum through an activation function to produce the next output, LSTMs
perform a number of more complicated, interwoven steps.

First, a forget gate layer decides which information in the hidden state should be kept,
and what should be thrown away, based on the current input and the previous output. This
is done by outputting a number between zero and one for each element in the hidden state
(using a sigmoid function), where zero means ‘throw this element away’, and one means
‘keep this element in its entirety’.

Then, an input gate layer decides which values in the hidden state should be updated
(again using a sigmoid function), and then creates a list candidate values (using a hyper-
bolic tangent function) that could be added to the state. These two can then be combined
to figure out which elements of the state should be updated, and by what value exactly.

Next, the old cell state is actually updated using the output of the three steps explained
previously. First, the forget gate layer is applied, meaning the old cell state forgets infor-
mation now deemed irrelevant. Then, by applying the input gate layer, the network finds
which values should be updated, and by how much exactly. This results in the new cell
state.
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Finally, the network decides what the output for this step should be. This is done by
the output gate layer, which is based the current cell state, and the output of the previous
timestep. The network first decides which parts of the new cell state are relevant for the
next output. This is done by applying another sigmoid function to the previous output. The
new cell state is then passed through a hyperbolic tangent function, the result of which is
multiplied by the selection made earlier. This makes sure only sensible outputs are selected
(due to the sigmoid function of the previous output), and the appropriate values get selected
(due to the hyperbolic tangent function of the new cell state). Both the output and the cell
state are then passed on to the next timestep, and the whole cycle repeats itself.

2.3 Applications of LSTMs
This section will briefly discuss three concrete examples of the numerous successes that
have been attained using LSTMs. All three of these examples involve language in some
way, which is an omnipresent form of sequential data that was historically very hard to
work with for computers.

Sutskever et al. (2014) used LSTMs to perform sequence to sequence learning, also
known as machine translation. They trained one encoder LSTM, mapping input to a fixed-
dimensionality vector, and one decoder LSTM, mapping that vector back to a sentence.
This setup could then be used to translate English to French, and has served as the basis
for much more advanced neural translation methods that followed.

Vinyals et al. (2015) combines a Convolutional Neural Network (CNN), a type of
neural network particularly well-suited for image data, with an LSTM to automatically
caption images. The output of the CNN is used as the input for the LSTM, which is
trained to output sentences based on that input. The resulting end-to-end solution allows
for automatic captioning of images, connecting visual information to textual information,
which is a crucial step in solving computer vision.

Zen et al. (2016) builds on some prior research using LSTMs for text-to-speech, by
further optimizing their speed, size, and overall quality. The resulting network laid the
foundations for voice models that can be used on mobile devices, resulting in more accu-
rate voices for the increasingly omnipresent mobile voice assistants.

2.4 Using LSTMs for Appliance Identification
Over the past years, LSTMs have quickly become the go-to technique for anything involv-
ing time-series in the deep learning community. Depending on the particular use case,
other techniques may give superior performance, but LSTMs tend to perform surprisingly
well on many different datasets (Lipton et al. (2015)).

As appliance identification is clearly a time-series problem, but, at the time of writ-
ing, no prior research project appears to have applied LSTMs to solve it, exploring the
application of LSTMs on the appliance identification problem only seems a logical next
step.



Chapter 3
Method

In this section, the method employed to perform model training, evaluation, and testing is
described. First, Section 3.1 describes the experimental steps taken to answer the research
subquestions. Next, Section 3.2 provides details about the implementation used for the
experiments, after which Section 3.3 lists the hyperparameters used during model training,
and explains how these were selected..

3.1 Experimental Steps
To answer the three subquestions outlined in Section 1.5, three separate experiments were
performed.

To answer subquestion 1, “What level of performance can be achieved using LSTM-
models?”, models with different hyperparameter settings were trained, until a satisfactory
set of hyperparameters was found (for more details on this process, refer to Section 3.3).
Note that these need not necessarily be the best settings that could theoretically be found,
but they are the best that could be found with the available resources, and substantially
better than the default hyperparameters.

To answer subquestion 2, “How does performance change when the data are modified
in various ways?”, the model trained for subquestion 1 was used to perform inference on
data samples with increasing levels of Gaussian noise. The mean value of this noise was
always set to 0, and the standard deviation was increased logarithmically. The classifica-
tion accuracy, precision, recall, and F1-score were then compared for each level of this
added noise.

To answer subquestion 3, “How well does the algorithm generalize to unseen exam-
ples?”, the training and testing was performed on separate subsets of the data. As a result,
the test set scores shown in this thesis are an indication of how well the model generalizes
to unseen examples.

9
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3.2 Implementation
Due to their popularity, most modern machine learning toolkits offer a ready-made imple-
mentation of LSTM-nodes, so little coding has to be done regarding these fundamentals.
This thesis uses the Tensorflow implementation of LSTMs, accessed through Tensorflow’s
Python API. For details on this API, please refer to the online Tensorflow API documen-
tation. Tensorflow was chosen due to its popularity at the time of writing, and the active
community and good documentation resulting from that popularity. The particular imple-
mentation used for this thesis is a modified version of Romijnders (2017), which is freely
available online. Aside from modifications necessary to import the PLAID-dataset (i.e.
changing the expected shape of the input data), addition of output statements for more in-
depth performance analysis, and tuning of the hyperparameters to improve performance
on this specific problem, this code was left unchanged. For more details on the hardware
and software used, please refer Table 7.1 and Table 7.2, respectively, in Appendix A.

3.3 Hyperparameters
Hyperparameters are the tuning knobs of machine learning methods. They can be used to
tweak, for instance, the number of layers, the amount of nodes per layer, and the maximum
number of iterations of gradient descent that should be performed. The tuning of hyperpa-
rameters can be a tedious process, as the search space is incredibly large, can have many
local optima, and, depending on the settings chosen, can take a long time. Currently, there
is no clear, failsafe, optimal way to tune hyperparameters. In fact, state-of-the-art results
that use deep learning are often found because either a lot of computing power was avail-
able, allowing for a large number of hyperparameter settings to be tried, or because a lot
of time was spent just trying out different settings. Due to the limited computing resources
available, the latter most closely resembles the approach used for this thesis: starting with
the default hyperparameter settings , individual hyperparameters were adjusted until those
with the greatest impact were found, and then a range of values was tried for those particu-
lar hyperparameters. Figure 3.1 shows how the model cost decreases with every iteration,
for various settings of hyperparameters. The best model found (the purple line near the
top, with the highest test set accuracy after 50,000 iterations of stochastic gradient de-
scent), and thus the model used for all subsequent experiments, used the hyperparameters
listed in Table 3.1.
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Table 3.1: Optimal hyperparameters found

Hyperparameter Setting

Batch size 1,000
Number of iterations 50,000

Dropout fraction 0.99
Number of layers 8

Cells per layer 20
Maximum gradient normalization 5

Learning rate 0.001
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Figure 3.1: This figure shows how the accuracy climbs as the number of iterations grows. Each line represents a distinct training sequence, with a
different set of hyperparameters being used for each line (omitted for legibility). Some training sequences were stopped early (e.g. the orange line that
ends around 38% accuracy), as the improvements were deemed to be too slow. The jitteriness in the lines is due to the use of stochastic gradient descent,
where each iteration is trained only on a subset (batch) of the total training data set. The hyperparameters outlined in table 3.1 resulted in the highest
accuracy, which is here represented by the purple line at the top).



Chapter 4
Data

This chapter describes the data used to train an LSTM model for appliance identification.
Section 4.1 discusses the data taken directly from Crownstones. Next, Section 4.2 de-
scribes the PLAID-dataset, after which Section 4.3 concludes the chapter by explaining
how data were preprocessed before use.

4.1 Crownstone
An important source of data, and the original motivation for this project, is the Crown-
stones themselves. Using a Bluetooth Low-Energy (BTLE) connection, one can retrieve
data samples from the current and voltage sensors inside Crownstones, which can then
be stored for analysis. Data can be polled at various refresh rates, though the on-board
cache memory places a restriction on the amount of data-points that each sample can con-
tain. Due to this memory constraint, each sample can consist of at most 75 individual data
points, after which there is a short gap in the measurements while the gathered data are
transferred over Bluetooth.

Figure 4.1 shows a single sample of a laptop charger. The sample consists of 75 data
points, gathered from a Crownstone with a sampling frequency of 3,000 Hz, meaning the
whole sample spans a duration of 25 milliseconds. Note that the values for the current are
relative values, and these are not measured in ampere. The effects of this fact, and how
they can be remedied, are further discussed in Subsection 4.3.

Due to the aforementioned brief gap in measurements, and the difficulties involved
in gathering the enormous amounts of data required for most deep learning-algorithms to
perform well, other datasets were considered to perform model training and evaluation on.
This search led to the PLAID-dataset, which was used for the experiments performed for
this thesis.

13
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Figure 4.1: This figure shows the current drawn by a laptop charger over the course of 25 millisec-
onds. These data were gathered from a Crownstone, which explains the large values on the y-axis
that cannot be interpreted directly as ampere.

4.2 PLAID
To train deep learning models, such as LSTMs, a large amount of data is required. One
key feature of the PLAID-dataset (Gao et al. (2014)) is its size. It consists of data from
1074 distinct appliances across 11 different classes (the labels for which can be found
in table 4.1), gathered from 55 individual households in the United States. These data
were gathered for several (between 1.00 and 13.43) seconds at a polling frequency of
30,000 Hz. This higher frequency (recall that Crownstones sample at 3,000 Hz) allows
for an interesting research subquestion regarding the generality of the algorithms used for
this thesis to be answered: can a model that was trained on down-sampled PLAID-data
accurately classify data obtained directly from Crownstones?

Figure 4.2 shows one sample (of a laptop charger) from the PLAID-dataset. This par-
ticular sample has been down-sampled (more on this in Subsection 4.3) to match the data
coming fom Crownstones, meaning this sample consists of 75 data points at a sampling
frequency of 3,000 Hz, meaning the whole sample spans a duration of 25 milliseconds.
Note that the negative value is a result of Alternating Current (AC), which is converted to
Direct Current (DC) by the laptop’s AC-DC adapter.

Figure 4.3, from Gao et al. (2015), shows some randomly selected samples of the cur-
rent data for all 11 device classes. An elaborate descriptive analysis (Gao et al. (2015)) of
the PLAID-dataset can be found on the PLAID initiative’s website, so to avoid duplication
of information, this analysis is not included again here. The reader is encouraged to visit
their website for more in-depth information on PLAID.
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Table 4.1: Device labels used for PLAID-dataset

Label number Device class

1 Air Conditioner
2 Compact Fluorescent Lamp
3 Fan
4 Refrigerator
5 Hair Dryer
6 Heater
7 Incandescent Light Bulb
8 Laptop
9 Microwave
10 Vacuum Cleaner
11 Washing Machine

Figure 4.2: This figure shows the current drawn by a laptop charger over the course of 25 millisec-
onds. These data were gathered from the PLAID-dataset, meaning that unlike the Crownstone data
shown earlier, the values on the y-axis for this figure are in ampere. Note that the negative values
are a result of the alternating current drawn by the laptop’s adapter, which uses an internal AC-DC
converter to ensure that DC power be delivered to the laptop.

Because the PLAID dataset is freely available online, it has been used by other research
projects in the past. Examples include Zhao et al. (2016), Adabi et al. (2015), and Barsim
et al. (2016). The results from these other projects can serve as a performance benchmark
to which the models trained for this thesis can be compared. This allows for straightfor-
ward comparison between the different, more classical methods used in earlier work, and
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the recent deep learning models that are considered in this thesis. Such a comparison can
be found in Section 6.1.

4.3 Preprocessing
Training an LSTM-network is a compute-intensive process. As this intensity grows with
the size of the input, the original dataset was split up before being fed into the network in
order to reduce the training time required.

The original PLAID-dataset consists of an array of 1074 rows (one for each unique
appliance), each of which has between 30,000 and 402,900 columns, depending on how
long the device’s current was measured for. These data were split up into smaller sections
of 200 data points (i.e. 6.667 ms of current data) per sample, and each of these sections
were individually labeled according to the sample they were taken from. As a result, the
number of data samples increased significantly, from 1,074 with the original dataset, to
485,251 after this split, but each individual entry consisted of far fewer (viz. 200) data
points.

To perform down-sampling by a factor 10, bringing the frequency of the PLAID-
dataset of 30,000 Hz down to the sampling frequency of Crownstones of 3,000 Hz, the
first data point of a sample was kept, after which the next nine were discarded before the
next data point was selected, and so on. Specific values aside (as mentioned previously,
the data taken from Crownstones are not measured in ampere), the down-sampled PLAID
data and the data taken from directly from Crownstones look roughly similar (compare
Figure 4.1 and Figure 4.2). As a result, it seems reasonable to assume that classification of
Crownstone data using a model trained on PLAID data is feasible, once Crownstone data
can be properly converted to units of ampere.

For comparison to the Crownstone data, the PLAID-dataset were preprocessed to
mimic the data taken from Crownstones as closely as possible. For this resample, the
data were down-sampled to 3,000 Hz using the method described above, and each sample
was reshaped to consist of 75 data points (or 25 ms of current data), resulting in a total of
129,401 labeled examples.
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Figure 4.3: This figure shows five samples, gathered from the PLAID-dataset, of the current drawn
during the transient (boot-up) phase, for all 11 appliance types. These data clearly show that even
within appliance class, there can be a large difference in transient behavior, including the duration
of the transient phase.



Chapter 5
Results

This section discusses the experimental results obtained with the LSTM-model. First,
Section 5.1 discusses the training time required, and how this relates to changes in the hy-
perparameters. Next, Section 5.2 discusses some performance metrics for the best model
found, after which Section 5.3 concludes by describing the model’s robustness to changes
in the testing data.

5.1 Required Training Time
As discussed in Subsection 3.3, the hyperparameters have a large impact on the amount
of time and computing power required for training. Fully training a model for 50,000
iterations took approximately five days using the setup outlined in Appendix A. Of course,
increasing the learning rate, reducing the number of iterations, decreasing the batch size,
or reducing the number of layers or nodes per layer can reduce this time, possibly at the
cost of worse performance. Training time could also be reduced by training this model on
an NVIDIA GPU, but as such hardware was not available for this project, training had to
be performed on a CPU instead.

5.2 Model Performance
With the right hyperparameters, this model performs well. The mean F1-score, i.e. the har-
monic average of the precision and recall across all 11 appliance classes, on the Crownstone-
split (see Subsection 4.3 for more details on how this split was made) of the PLAID-dataset
is 92%, which is higher than other state-of-the-art results using more classical approaches.
More details on the model’s performance can be found in the classification report in Ta-
ble 5.1, and the comparison with the literature in Section 6.1.

18
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Table 5.1: PLAID test set classification report

Device Class Precision Recall F1-score Support

Air Conditioner 0.96 0.85 0.90 921
Compact Fluorescent Lamp 0.69 0.99 0.82 1699
Fan 0.97 0.89 0.93 1498
Refrigerator 0.93 0.86 0.89 587
Hair Dryer 0.99 0.86 0.92 1590
Heater 0.96 0.96 0.96 442
Incandescent Light Bulb 0.97 0.87 0.91 1266
Laptop 0.99 0.97 0.98 1874
Microwave 0.95 0.95 0.95 2247
Vacuum Cleaner 0.98 0.88 0.93 325
Washing Machine 0.98 0.86 0.92 491

Average / Total 0.93 0.92 0.92 12940

5.3 Model Robustness
To investigate how robust the model is when noise is introduced, Gaussian noise with an
increasing standard deviation was added before classifying the test set using the trained
model. The figures below show how the accuracy, precision, recall, and F1-score (Fig-
ure 5.1), cost (Figure 5.2), and classifications (Figure 5.3) change when exponentially
increasing the standard deviation of added the Gaussian noise, while keeping the noise’s
mean fixed at 0.

The scores and cost behave predictably: small amounts of noise hardly affect these
values, but as the noise becomes larger, the model is finding it increasingly difficult to
perform accurate classification. Interestingly, as the noise becomes very large (σ > 10), a
small increase in performance can be observed. From the confusion matrices, it becomes
clear that samples are more likely to be classified as larger appliances (i.e. appliances that
tend to draw more current, such as air conditioners, microwaves, and washing machines)
as the amount of noise is increased. This is explained by the fact that the PLAID-data are
not normalized across classes, meaning the actual values of the current matter. Intuitively,
adding large-valued noise to the original data will cause the data to be more extreme,
meaning classification of the larger appliances becomes more likely.
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Figure 5.1: This figure shows how the accuracy, precision, recall, and F1-score on the test set
decrease as Gaussian noise (with zero mean and increasing standard deviation) is added to the data.
Note that the x-axis has a logarithmic scale.

Figure 5.2: This figure shows how the cost on the test set classification increases as Gaussian noise
(with zero mean and increasing standard deviation) is added to the data. Note that the x-axis has a
logarithmic scale.
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Figure 5.3: This figure shows how the classification confusion matrix changes as more Gaussian
noise is added. As the noise increases and causing the data to take on increasingly large values, each
sample gets classified as a large appliance.



Chapter 6
Discussion

This chapter goes into some of the context surrounding this thesis. First, Section 6.1 dis-
cusses related literature. Then, Section 6.2 mentions some complicating factors encoun-
tered in the process of writing this thesis, and finally Section 6.3 discusses some possible
examples of future work.

6.1 Comparison to the Literature

6.1.1 Datasets
Two recent, public databases for appliance identification based on plug-level power data
are available: PLAID (Gao et al. (2014)) and WHITED (Kahl et al. (2016)). PLAID
contains high-resolution measurements of appliances in 11 device classes, gathered from
55 households across the US. WHITED contains few (for many device classes, only 1)
high-resolution measurements for 46 device classes,

Due to the data-hungry nature of deep learning-methods examined in this thesis, the
PLAID-dataset was select for model training and evaluation. The low number of unique
appliances per class in the WHITED-dataset would cause the resulting model to gener-
alize less easily, which would hurt performance on Crownstone data. For more detailed
information about the PLAID-dataset, see Section 4.2.

6.1.2 NILM and appliance identification
Appliance identification can, as discussed in Section 1.1, be performed either on meter-
level data, to try and disentangle an aggregated signal into individual appliances, or directly
on plug-level data. Given the context of this thesis, i.e. the Crownstone product, the latter
is more relevant. Unfortunately, it was also studied far less, as meter-level NILM is easier
to perform on a large scale, due to the relatively small amount of dedicated hardware
required. For the sake of brevity and relevance, this section will discuss research into

22
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plug-level appliance identification only. For an elaborate summary of early research into
(meter-level) NILM, refer to Heart (1995).

6.1.3 Deep learning techniques in appliance identification
The general context of this thesis, i.e. the application of modern deep learning-techniques
to the problem of appliance identicialification, has not been studied much up to this point.
The most relevant study at the time of writing is De Baets et al. (2018). For this paper,
researchers plotted the VI-trajectories for the various appliances, converted these plots to
images, and then used CNNs to classify these images. This approach led to an average F1-
score of 77.6% on the PLAID-dataset (compared to 92% obtained for this thesis), and an
average F1-score of 75.46% on the WHITED-dataset, which, while not state-of-the-art, is
a interesting result given the indirect approach used. The key appliances holding back the
performance, the authors state, are appliances that have similar electrical components: fans
and the air conditioners are confused (as both contain fans), and both washing machines
and refrigerators contain a motor.

A study done by Rizky Pratama et al. (2018) seems similar to this thesis, but the ap-
proach used there is quite different. They use LSTM-networks to classify, on an aggregate,
meter-level signal, which appliances are active in a given room. They do this by creating
14 classes, each of which comprises a combination of appliances being used, and assign
the aggregate signal to one of these classes. As a result, they are able to identify which
appliances are being used in a given room, which can be considered a form of indirect ap-
pliance identification. Their approach would not scale well in the context of Crownstone,
though, as it requires prior knowledge of which appliances are present in a room, and what
the aggregated power usage of various combinations of these appliances looks like.

Another initiative worth mentioning is TimeNet Malhotra et al. (2017). This is a re-
cently published pre-trained LSTM-network designed for time-series classification pur-
poses. Sadly, the authors have not published the code for this network online, so it could
not be tested.

The particular contribution of this thesis, i.e. the application of LSTM-networks to
classify appliances directly using their current drawn over time, appears not to have been
studied before. This makes immediate comparison to the literature difficult, and has as a
side-effect that the hyperparameters, as discussed in 3.3, had to be experimentally deter-
mined for this thesis, and could not be based on any prior research.

6.2 Complicating Factors

6.2.1 Random initialization
As with all deep learning and machine learning algorithms, the initial state from which one
starts training the network can have a tremendous effect on the performance of the final
model. Weight initialization is done at random (though different algorithms may employ
somewhat different techniques), and this randomness can happen to work in your favor, or
happen to work against you.
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Training an identical model several times with different random initializations can
show the impact of this factor, as well as allow researchers to cherry-pick the best re-
sulting model at the end. Due to time and computation restrictions, this analysis will be
left for future research.

6.2.2 Hyperparameters
As discussed in Chapter 5, the hyperparameters have an enormous amount of influence on
the model performance. They determine how quickly the model learns, to what level of
performance it converges, and how well the model will generalize to unseen examples.

Getting the code to run is the easy part of deep learning; finding a set of hyperpa-
rameters that results in good model performance is where the work starts. For this thesis,
many different sets of hyperparameters were experimented with, until the set resulting in
the final model used for the experiments was found. This model was the best found, but it
should by no means be considered optimal. Training a model for long enough to be able
to judge whether or not its performance is promising (i.e. possibly better than previous
attempts) takes several hours up to an entire day on the hardware used for this thesis. As a
result, only a limited number of models were trained, using a limited set of hyperparame-
ters. Further research might optimize these further, and thus produce models that perform
better using the exact same algorithms.

6.2.3 Steady-state versus transient behavior
One thing to note for the splits made for this thesis (as described in 4.3) is that the training
dataset now consists of mostly steady-state behavior. As a result, the high accuracy of the
model likely reflects the fact that the model has learned to recognize the devices’ steady-
state behavior well. As this is the state devices generally spend most time in, one could
argue that recognizing this particular state is most important. Still, an ideal model should
be able recognize both the transient and the steady-state behavior, so the present work
could be extended by gathering a large amount of data on the transient states as well, and
training a model on those data.

6.2.4 Generality of the data
The PLAID-dataset used to train the models for this Thesis was, as indicated in Section 4.2,
gathered in the United States. While the appliances themselves likely originated from all
over the world, the potential effects of the US power grid were not studied in this thesis.
Having a dataset with data from all over the globe would remedy this problem, but is
substantially harder to obtain.

Furthermore, a downside of the PLAID-dataset is that, since it was gathered by a third
party, the 11 different device classes for which data were gathered were not selected specif-
ically for this research project, nor to be of the most use to Crownstone. As a result, the
device classes do not align very well with those expected to be used most by Crownstone’s
customers. Therefore, while its size makes it a very suitable dataset to perform model
training and analysis on, the resulting model is not of much use for Crownstone directly,
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as many of the devices customers are expected to plug in often were not part of the PLAID-
dataset. Still, this thesis does prove that such models can be trained using deep learning,
provided that enough data are available.

6.2.5 Computing requirements
The performance achieved using the methods discussed in this paper is better than that
of other state-of-the-art methods, such as De Baets et al. (2018). Still, the computational
requirements of these methods should also be taken into account. Clearly, if a model has
vastly superior performance and requires marginally more time and/or computing power
to run, the newer model is still at an advantage. But if two models share similar perfor-
mance, but one is far more computationally efficient, then the more efficient model will be
preferred in real-world applications.

Deep learning has been widely criticized for its enormous requirements regarding
available training data, computing power, and computing time. While many methods have
become more efficient in recent years, more traditional methods are still superior for many
applications. But knowing that well-performing models can be trained, the question re-
mains whether deep learning is a sensible approach for appliance identification.

Only time will tell what the answer to this question will be. But even with the limited
amount of time and computing power available for this thesis, state-of-the-art accuracy
was achieved using the methods described. With further tuning of the hyperparameters,
the use of more computing power, and the availability of more training data, performance
is likely to increase further, meaning the state of the art would thereby forward. And while
it cannot be denied that the performance per unit of computing power, especially during
the training phase, is dramatically lower than that of simpler, more traditional methods,
computing power may not be as much of an issue in the future. Which method is preferable
ultimately depends on the specific application for which it is used.

Finally, the field of deep learning as a whole is, of course, by no means stationary.
Existing methods will become more efficient, entirely new methods will be thought of, the
amount of available data will continue to grow, and computing power will keep increasing
and becoming cheaper. Over time, as these improvements add up, traditional methods
may lose their preferential status, as the (potential) simplicity of applying deep learning to
problems for which enough data are available starts outweighing computational efficiency.

6.3 Future Work

6.3.1 More efficient algorithms
While the results obtained for this thesis are good enough to be useful in a real-world
application, the memory and computing power required for inference are still too high to
be run locally on the Crownstones themselves. While inference can be performed quickly,
the model is in the order of 100 MB in size, and therefore requires the storage of at least a
smartphone, or even the cloud. More efficient and/or compression of models should solve
this problem, and allow inference to run directly on the Crownstones themselves, which
would result in an even quicker and more seamless end-user experience.
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6.3.2 Device state identification
Many devices, such as simple lights, paper shredders, or toasters, only have a single state,
or maybe an on and an off state, while others, such as televisions, washing machines, and
hair dryers, might have many different states. Even if we disregard the boot-up behavior
of all these devices, this still results in a variety of different current patterns that can occur,
even for a single device. If we then also factor in the amount of distinct devices that fall
into a certain device class, all of which can have their own distinct set of unique states, it
becomes clear how difficult it is to obtain a database that covers enough of these scenarios
to be truly general.

Obtaining labels for the different states these devices can be in, perhaps by automat-
ically recognizing that a previously-labeled device is now in an unseen state, and adding
a new label accordingly, would significantly increase the generality of these methods, and
enable long-term pattern recognition, as discussed in Subsection 6.3.3.

6.3.3 Long-term pattern recognition
If the same device remains plugged into the same Crownstone for a longer period of time,
and that Crownstone is able to identify the various states this device can be in (as discussed
in Section 6.3.2), this information can be used to identify common usage patterns in these
data. For instance, if a certain television is never used during working hours, the Crown-
stone it is plugged into might switch it off entirely (as opposed to keeping it in stand-by
mode) in order to save power. Alternatively, if an elderly person turns on the bathroom
light for approximately 20 minutes every morning, and the Crownstone notices that one
morning the light is suddenly on for much longer (e.g. more than two standard deviations
longer than normal), the Crownstone might notify a family member, as the user may have
fallen and become unconscious.

While many such scenarios can be imagined, user-friendliness and privacy always need
to be taken into account. While recognizing some of these high-level patterns may be rel-
atively straightforward given the state-information of certain devices, the ethical concern
remains whether these data can actually be used, whom they belong to, and whether it is
truly more user-friendly.



Chapter 7
Conclusion

This thesis discusses how an LSTM-model was trained to perform appliance identification,
how this resulting model was tested, and what results were obtained. The resulting LSTM-
model performs substantially better than recent related work, obtaining a macro-average
F1-score of 92%, compared to 77, 6% obtained by De Baets et al. (2018) and 89% obtained
by Barsim et al. (2016). Adding noise to the data predictably reduces performance, but
the models are robust to small levels of noise. The resulting model generalizes well to
unseen examples, provided that new data be in a format comparable to the data used during
training.

To answer the main research question: Yes, LSTM-models can perform well on the
appliance identification task, given the availability of enough training data and comput-
ing power. This is hardly a surprising result. LSTMs had been applied successfully to
other time series classification-tasks before (meaning the model can work, given appropri-
ate training data), and appliance identification had been previously performed using other
techniques (meaning the data are classifiable). A key advantage of LSTMs over more tra-
ditional methods is the lack of in-depth knowledge required regarding electronics: simply
providing the model with enough data suffices to train an accurate, robust, and general
model, that can be easily updated and deployed to production using Tensorflow. And pro-
vided the data are stored in a secure fashion, the model can continue to improve over time,
learning to recognize more devices, device states, and long-term usage patterns.

In conclusion, the two main take-home messages from this thesis are the following:
LSTM-models are very well-suited for appliance identification, but obtaining the large
amount of data and computing power necessary to train them properly is costly.
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Appendix A

Experimental Setup
All models discussed in this thesis were trained and evaluated on a desktop computer with
the specifications found in table 7.1 (hardware), and the software specified in table 7.2.

Table 7.1: Specification of the hardware used

Component Specification

CPU Intel Core i5-4590
GPU (not used) Sapphire R9 290 OC Tri-X

GPU memory (not used) 4 GB GDDR5
RAM 16 GB (4x4GB) Crucial Ballistix Tactical

Main hard drive Crucial MX100 256GB
Secondary hard drive Seagate Barracuda 7200.14

Motherboard Gigabyte GA-Z97-D3H

Table 7.2: Specification of the software used

Software Version

Windows 10 Build 17025.1000
Linux Subsystem Ubuntu 16.04.3 LTS

Tensorflow 1.1.0
Python 3.5.2
Numpy 1.13.3

MatPlotLib 2.1.0
Seaborn 0.8.1
Pandas 0.21.0
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