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Abstract

Weather-dependent energy sources such as wind and solar power lack the flexibility to adjust their power
supply in response to the demand. To facilitate the integration of these renewable sources the electricity
demand needs to respond to the available electricity supply. Thermostatically controlled loads such as
refrigerators and electric water heaters are useful for this due to their autonomous operation, thermal
bu↵er property, and high aggregate power demand. The work in this thesis is aimed at controlling
a large-scale population of these thermostatically controlled loads to ensure that the aggregate power
demand of these appliances matches the available renewable power supply.

Instead of a large centralized controller a distributed approach is chosen to provide robustness, mod-
ularity, and scalability. By using distributed model predictive control (DMPC), local controllers are able
to anticipate on future events and to directly integrate local constraints such as user comfort levels.
However, the majority of thermostatically controlled loads is constrained to binary on/o↵ inputs, com-
plicating the DMPC optimization due to discrete ‘jumps’ in the negotiations among controllers. Existing
DMPC approaches make use of additional heuristics to terminate the optimization when these jumps
result in non-converging oscillations.

The contributions of the work in this thesis are twofold. First, the potential of demand response using
thermostatically controlled loads is investigated and translated into initial guidelines for a feasible match
between the renewable supply and aggregate demand. Secondly, a serial implementation of feasible-
cooperation DMPC is proposed to control the appliances. Closed-loop simulations show that unlike
parallel DMPC methods from the literature such an approach converges towards the centralized MPC
solution. Moreover, communication and computation requirements of the serial approach scale linearly
with the amount of subsystems, without requiring a centralized coordinating agent.
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Chapter 1

Smart Grids and Demand Response
of Thermostatically Controlled
Loads

This chapter will briefly describe the context of this thesis. The chapter concludes with the statement
of the research objective, based on conclusions drawn from a literature survey.

1.1 Electrical grids

There are few manmade systems around that are so complex and yet so present in everyone’s life as the
electric grid. People have grown so accustomed to the availability of electricity that it has become a
resource most take for granted.

The tree-like structure of the electrical grid has remained relatively unchanged since its creation.
In such a structure, large centralized power plants generate electricity that is distributed through high
voltage lines. At the end of those high voltage lines, smaller distribution networks are used to deliver
power to end-users: households and businesses (Figure 1.1).

One of the key characteristics of the grid is that the demand and the supply of electricity should
be balanced at all times. Di↵erences between the two will result in an increase or decrease of the grid
frequency, and ultimately black-outs. A thorough coordination between consumption and generation is
therefore required to keep the grid balanced and operational.

producer

consumer consumerconsumerconsumer

Figure 1.1: Conventional grid structure
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producersmarketsretailersconsumers

Figure 1.2: Demand-driven supply chain

Electricity markets

For a long time, the coordination of generation and demand has been the responsibility of governments.
In the past two decades many developed countries have liberalized their grid system, replacing centralized
coordination by wholesale electricity markets. Here, large buyers and sellers negotiate market clearing
electricity prices to balance supply and demand. The markets operate on various time scales; long-term
contracts can be used to assure reliable supplies in the future, whilst real-time imbalances can be solved
on spot markets. Within liberalized electricity markets four main actors can be identified:

• Electricity producers
Producers generate electricity using mainly chemical combustion, nuclear fission, and to a lesser
extent renewables such as hydro-power, solar, and wind. They are generally large in order to benefit
from economies of scale.

• Transmission system operators
Transmission system operators (TSOs) are natural monopolies that manage (a section of) the grid
infrastructure. They are responsible for keeping the grid stable. When imbalances occur TSOs can
o↵er price incentives on a separate balancing market to resolve them.

• Electricity retailers/utilities
Electricity retailers buy electricity at the markets and sell it to their contracted customers. They
pay fees to use the infrastructure of the TSO and risk fines if they do not stick to their forecasted
demand to prevent imbalances.

• Consumers
Most end-users such as residents and businesses buy electricity based on long-term contracts with
their utility companies. Nowadays consumers usually pay time-of-use prices with a fixed high rate
during the day and a lower rate during the night.

Demand driven supply chain

The demand curve for electricity is extremely inelastic. Even in the case of real-time pricing, changes in
electricity prices will not significantly change consumer demand. Another way of putting this is that the
consumer demand drives the electricity supply chain. This is illustrated by the simplified scenario that
has been illustrated in Figure 1.2.

1. An end-user puts on a kettle to boil some water for a cup of tea.

2. The electricity retailer that has contracted the end-user needs to provide the required electricity
at the previously agreed rate. If the retailer has not anticipated on this event, additional power
needs to be purchased at an electricity market.

3. The increased demand of the utility company will drive up the market clearing price of electricity
until it becomes profitable for producers to increase their output.

4. Producers generate the electricity required to balance the additional demand.

Unpredicted peaks or drops of the customer demand require power plants to ramp their production up or
down very abruptly. As only a limited number of power plants, most notably gas turbine power plants,
are able to do this and costs of such services are high, market clearing prices on spot markets may soar.

2
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Figure 1.3: Projected development of renewable generation in the EU

Trends and challenges

The demand-driven supply chain leads to ine�ciencies when forecasts are not accurate or large peaks
in the demand occur. On top of this, recent trends in the energy landscape may result in additional
stresses on the conventional grid structure, raising the question whether it is ready for the future.

• Increasing demand and dependency
The global demand for electricity is expected to double in the coming 25 years [19]. Apart from the
increasing quantitative demand, the qualitative demand, i.e. dependency on a reliable supply of the
electricity, has increased as well. A century ago, a blackout would require people to light candles to
continue their work. Today it will most probably lead to a complete shutdown of operations. The
growing quantitative demand may result in larger imbalances. The capacity and responsiveness of
balancing mechanisms will need to increase significantly to ensure a qualitative electricity supply.

• Increasing use penetration of renewables
Partially driven by the increasing demand, an increasing fraction of electricity is produced using
renewable sources such as wind and solar. Member states of the European Union have agreed to
strive towards an average contribution of 20% of their energy mix from renewable energy sources
by 2020 [9], [10]. The expected composition of these renewable energy sources in 2020 shows that
over 50% of these sources depend on weather factors such as wind and sun intensity (Figure 1.3).
Unlike fossil fuel based power plants, wind turbines and photovoltaic installations cannot easily be
adjusted to temporarily increase their output. Uncertainty in wind predictions and volatility of
wind energy production are therefore among the main concerns of TSOs [12].

• Increasing distribution of electricity resources
While traditional fossil-fueled power plants tend to be large due to benefits of scale, these advantages
do not necessarily apply to renewable-based generation such as wind turbines and photovoltaic
installations. In many western countries consumers have started investing in personal photo-voltaic
installations, wind turbines, and micro combined heat and power systems, turning them into so-
called ’prosumers’. This dramatically increases the amount and distribution of active components
in the power grid, making it much harder to coordinate balancing, pricing, and the prevention of
(local) congestions.

The classical grid may not be able to handle the described developments. Some of them, such as the
increased distribution of electricity resources, may also enable new possibilities for a future, smarter grid.

1.2 Smart grids

To improve the e�ciency of the current grid and to cope with the upcoming challenges a smart grid
has been proposed in [1]. This smart grid is a combination of the electric grid infrastructure and a

3
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Figure 1.4: Three main trends and challenges to the existing grid
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Figure 1.6: Reversed, generation driven supply chain

digital information and communications network. Individual components such as smart meters, wind
turbines, and other nodes in the grid network can be fitted with some processing power and the ability
to communicate with their neighboring elements. This opens up an enormous amount of opportunities
for monitoring, e�ciency, security, and control.

At this point the development of such a smart grid is widely considered to be the key to create a
future-proof electric grid. Many large enterprises have dedicated specialized divisions to the development
of these solutions. In the academical field many of the main universities and research institutions in
the United States and the European Union have started smart grid research programs and dedicated
conferences and journals have sprung up.

The scale of the smart grid developments is enormous. Besides technical challenges and the vast
amount of stakeholders, there are still many political, legal, administrative and business hurdles to be
taken. The focus of this research will therefore be on a specific branch of smart grid research that deals
with some of the main challenges that have been laid out so far: demand side management.

Demand side management

The demand driven supply chain of the electric grid is possible because power plants are able to adjust
their output based depending on price levels. Wind and sun, on the other hand, do not respond to these
pricing levels, making it harder to integrate renewable-based generation on a large scale. This can be
seen in Germany, where a high penetration of PV currently leads to large grid imbalances and the use
of expensive gas-turbine power plants to compensate these. The inability of renewable generation to
comply with the conventional demand-driven supply chain is illustrated in Figure 1.5.

Grid energy storage can be extremely useful to bu↵er the temporary imbalances that may occur. At
this point, however, the total grid energy storage capacity, mainly pumped-storage hydroelectricity, is
marginal with respect to the total electricity throughput. Although the development of plug-in electric
vehicles is expected to increase this capacity, additional methods will be needed.

A widely suggested alternative is to manage the demand to match a certain generated supply. This
requires a paradigm shift and reversal of the conventional supply chain, this is illustrated in Figure 1.6.

It should be noted that in Figure 1.6 the function of the electricity retailer is to convert market price
levels into certain incentives for consumers. If consumers (or prosumers) gain direct access to electricity
markets the role of the electricity retailer in its current form may become obsolete. Another, more general
interpretation of the retailer can therefore be that of an aggregator of consumers that can act on their
behalf on wholesale electricity markets.
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Figure 1.7: Illustration of demand response principle

Di↵erent approaches are possible when it comes to the implementation of demand side management.
Based on a centralized perspective, an utility could gain direct load control of customers appliances such
as pool pumps. Such a centralized approach may have disadvantages with respect to privacy, acceptance,
and adaptation by the end-users of the appliances. The work in this thesis is based on a distributed
perspective, in which an utility o↵ers incentives to initiate a locally controlled response of the demand.

1.3 Demand response

The general objective of demand response is that the customer demand for electricity adapts to a certain
reference power that is determined by the coordinating party: a TSO, retailer, or other aggregator. This
principle is illustrated in Figure 1.7. The customer demand might initially exceed the reference power
(Figure 1.7a). Rescheduling the operation of these appliances will result in a better distribution and fit
of the reference power (Figure 1.7b).

Demand response relies on user awareness of opportunity costs and their ability to make good deci-
sions. This may be achieved by o↵ering clear overviews of, e.g. the potential savings when a user operates
its washing machine later than initially planned. A downside of this approach is that users will need
to stay informed and repeatedly decide to respond or not. An alternative is that electric loads respond
autonomously, on behalf of their users.

Obviously not all appliances are suitable for this: a television that switches itself o↵ while the user
is watching is unlikely to be appreciated.

6



00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45
0

1

2

3

4

5

6

7

8

time [HH:MM]

te
m

p
e

ra
tu

re
 [
°C

]

t
1

t
2

t
3

Figure 1.8: By staying on for a longer time (t
2

) this TCL decreases its temperature so it can stay o↵ for
longer (t

3

vs. t
1

)

1.4 Thermostatically controlled loads

Thermostatically controlled loads (TCLs), such as electric water heaters, refrigerators, and air-conditioning
systems, are designed to control the temperature of a conditioned space or mass. They are especially
useful for automatic demand response because of some characteristic properties:

• High impact
Heating and cooling generally requires a lot of energy. In the United States TCLs comprise roughly
50% of electricity consumption [14]. In the EU-27, residential electricity consumption makes up
29.7% of the total electricity demand and similar to the U.S. TCLs make up about 57% of this
domestic electricity demand [3]. Since TCLs comprise such a large fraction of the electricity
demand, using them for demand response is likely to have a large impact.

• Continuous availability
Most TCLs are connected to the grid around the clock. Unlike a television that operates on demand
of its user, the TCLs can turn on/o↵ at any time. This means that the appliance is continuously
available for demand response and not restricted by user-defined time constraints.

• Autonomous operation
TCLs are controlled autonomously; the thermostat controls the switching of the heat pump without
user interference. Autonomous demand response is therefore unlikely to cause any inconvenience
to the user, as long as the temperature stays within user-defined comfort bounds.

• Storage capabilities
TCLs have the ability to temporarily store energy in the form of temperature gradients with their
environment. They can therefore anticipate on the future electricity supply, e.g. a refrigerator
is able to temporarily lower its temperature to extend the time it can stay o↵ afterwards. This
principle is illustrated in Figure 1.8.

1.5 Literature review

The use of thermostatically controlled loads for demand response is not a new idea, and various control
methods have been proposed in recent research. This section will briefly review and classify the work
that has been done to date and identify new opportunities.
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Demand response of single thermostatically controlled load

In the majority of the available literature the demand response problem is interpreted as a scheduling
problem. Main examples of this approach can be found in [23,26,32].

These approaches all assume some form of static appliance properties. Thermostatically controlled
loads, on the other hand, all have individual temperature dynamics. Based on these dynamics, accurate
predictions of future states can be made and optimal inputs can be chosen accordingly. Model predictive
control (MPC) is a control approach that determines optimal inputs based on the known system dynamics
[30]. It provides the ability to anticipate on future events and to directly include operational or comfort
constraints.

In [38] model predictive controller is developed for an electric heating system of a house. The controller
objective is to reduce the cost of required electricity in a market with real-time pricing schemes. In [39]
this approach is extended to optimize the use of locally generated electricity using a PV-installation.

In [2] a model predictive controller have been developed for a domestic freezer. In [4] a similar ap-
proach has been used to control a refrigerator. The objective of these controllers is to respond to signals
coming from the utility.

The TCL models that are used to predict the future states all contain integer input variables. This
results in (mixed) integer problems that are NP-hard. Moreover, due to the integer variables these
problems are non-convex. Depending on their scale, these problems can be solved using solvers like
CPLEX or, for linear problems, the GNU Linear Programming Kit. It should be noted that these solvers
make use of heuristics such as the branch and bound algorithms, optimality can therefore no longer be
guaranteed.

Demand reponse of multiple thermostatically controlled loads

Proposed model predictive control methods for multiple thermostatically controlled loads can be classified
in three main areas, as seen in the key review papers [33] and [8]. The general architecture of these
methods is illustrated in Figure 1.9.

• Decentralized control
In decentralized control all subsystems optimize their own objective function, without taking the
other subsystems into account (Figure 1.9a).

This method has been used in [34]. Each TCL is equipped with a temperature sensor and the
capability of measuring the frequency of the grid. When the frequency deviates from its normal
value, indicating grid imbalances, the appliance can react by turning on or o↵. The appliances
do so depending on their temperature, i.e. the refrigerators with the lowest temperatures will turn
o↵ first. This method has been implemented in Dynamic Demand1, a pilot project with 1000
refrigerators.

The decentralized control approach can work well but the lack of communication and ability to
coordinate actions in decentralized control is likely to result in a globally unstable system [31]. The
lack of communication also makes it impossible to change the objective of the controller online,
making this a very rigid approach.

• Centralized control
In centralized control the dynamics of all subsystems are combined in a single prediction model
(Figure 1.9b). Although this is favorable in terms of convergence and stability, the size of the
model will quickly result in mixed-integer problems that become intractable to solve.

In [6,20,24] state-bin models have been developed to generate a simplified representation of aggre-
gated TCLs. In [25] this approach is extended to minimize the required information and commu-
nication among units, enabling the possibilities for centralized control of large-scale systems.

Disadvantages of a centralized approach are not necessarily computational, but of a more funda-
mental nature [35]. Depending on the application, a centralized approach might have shortcomings
with respect to privacy, reliability, and robustness, since everything relies on a single control agent.

1Dynamic Demand, www.dynamicdemand.co.uk
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Moreover, conservative assumptions on the heterogeneity of subsystems might be needed to reduce
the complexity of the global models.

• Distributed control
In distributed control all subsystems locally optimize an objective function whilst coordinating the
optimization with other subsystems [7]. This approach has favorable properties with respect to
scalability and robustness whilst maintaining coordination and stability. Although this generally
comes at a price of extra communication and possible non-convergence of the negotiations, the
distributed model predictive control approach appears promising and will be therefore be reviewed
in more detail.

Distributed model predictive control of thermostatically controlled loads

distributed model predictive control (DMPC) lets subsystems determine their inputs locally yet coordi-
nate their actions by communicating with other subsystems (Figure 1.9c). The goal of the communication
is to reach a consensus on the values of the interconnecting variables by negotiation over multiple iter-
ations. The type of connection can be through the dynamics, inputs, constraints, and/or the objective
functions.

Dual-decomposition DMPC
Dynamic dual-decomposition techniques have been developed for DMPC in [16,29] and extended in [15].
In these papers it has been shown that negotiations among linear systems converge to a global consensus
assuming a strongly convex optimization problem.

This control approach has also been applied to demand response cases. In [5] this method is used to
develop a distributed model predictive controller for a complex refrigeration system that includes display
cases with inputs that are constrained to be binary variables. In [21] this method is used to develop a
controller for a network of micro combined heat and power systems that also have binary input signals.

In both cases problems with using this method arise due to the binary inputs of the thermostatically
controlled loads. Changes in the discrete inputs may result in large jumps in the locally optimal value of
the interconnecting variables. Since the resulting optimization problem is no longer convex, this makes
it more di�cult for the negotiations to converge. To overcome this, additional heuristics can be applied
that terminate the negotiations after a maximum number of iterations [5] or whenever the inputs start
to oscillate [21].

Feasible-Cooperation DMPC
Feasible-Cooperation DMPC (FC-DMPC) is an alternative method proposed in [31, 35, 37] that has
regularly been applied to control of electric power networks and complicated systems like hydro-power
valleys. In this method the local objectives are replaced by a global objective function. At each iteration,
each subsystem optimizes the global objective function with respect to its local input variables. During
this optimization it is assumed that the input variables of the other subsystem remain equal to those
in the previous iteration. After each optimization step the local optimal control inputs are broadcasted
to the other controllers. Under certain conditions this method has been shown to converge to optimal
centralized performance. To ensure feasibility and stability terminal penalties and constraints are added
to the optimization.

Although feasible cooperation DMPC is able to cope with a larger variation of subsystems, integer
inputs can still cause big jumps in the global objective function. However, the generality of this approach
provides a good starting point for further research.

DMPC relies on the convergence of negotiations on interconnecting variables to reach a consensus. If the
subsystems have discrete inputs this may result in big jumps in the objective functions, possible leading
to non-convergence of these negotiations.

Distributed model predictive control of hybrid systems

Due to their integer/binary inputs and continuous temperature dynamics, TCLs can be classified as
hybrid or switched systems. Unfortunately, research on DMPC of hybrid systems has been very lim-
ited [17]. In [27] the possibilities for distributed model predictive controller for a network of hybrid

9
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subsystems are explored. To overcome the non-convergence of the negotiations several heuristic methods
are proposed. These methods are aimed at increasing the granularity of the discretization, terminating
the negotiations at certain points, or increasing the penalty on deviations in the interconnecting variables
during iterations. Whilst these methods have been shown to work in some cases, analytical work on the
subject has not been found. The work in this thesis will therefore focus on new (combinations of) DMPC
methods aimed at controlling hybrid systems.

Conclusions

A controllable demand is useful to facilitate the integration of renewable electricity generation. Thermo-
statically controlled loads are extremely useful to respond to a given electricity supply. MPC is useful
to anticipate on forecasted energy supplies. To control multiple loads, DMPC o↵ers advantages such as
scalability, heterogeneity of the loads, and robustness of the implementation. Integer inputs complicate
the convergence of the DMPC negotiations among subsystems. No analytical work on DMPC of hybrid
systems has been found.

1.6 Thesis objective and outline

Building on the conclusions of the literature review, the objective of this thesis work is:

Develop a distributed model predictive control approach for a large-scale population of thermostatically
controlled loads. The global control objective of the controller is to match a forecasted power supply whilst
ensuring convergence of the negotiations among the loads.

The main focus of this thesis work is the study of the control architecture rather than the practical
implementation of such a controller. Therefore the following initial assumptions are made:

1. All system states are fully observable. This means that all appliances are equipped with the
necessary sensors. Disturbances are not taken into account.

2. All individual loads cooperate towards a global objective. This cooperation can be based on a
community of owners, i.e. a neighborhood that wants to maximize the use of locally generated
electricity, a single owner that own all appliances, or a utility that gives individual users incentives
to cooperate.

3. Each load is able to communicate with all other loads without delays and loss of information.

Thesis outline

The structure of this thesis will be as follows:

• Chapter 2: Thermostatically Controlled Load Models
Models are useful for simulation and the prediction of future states. In this chapter the required
models are formulated and validated using an experimental setup.

• Chapter 3: Model Predictive Control of Demand Response
The prediction model is used to synthesize a model predictive controller for a single TCL. The
performance of the controller and its contribution to demand response is evaluated.

• Chapter 4: Distributed Model Predictive Control of Demand Response
To control multiple TCLs a distributed controller is developed based on existing DMPC methods.
These methods are extended to cope with the characteristics of the TCLs.

• Chapter 5: Simulation and Comparison
The developed DMPC method is evaluated with respect to a centralized controller and alternative
DMPC methods. To give additional insights in the usability and practical impact of the proposed
method it is applied to two case studies.
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• Chapter 6: Concusions and Future Research
Based on the results of this thesis appropriate conclusions will be drawn, including a discussion
and recommendations for further work.

12



Chapter 2

Thermostatically Controlled Load
Models

In this chapter two di↵erent models are formulated that fit their respective purposes. They are validated
using measured data from an experimental setup.

1. Detailed simulation model
This model is used to simulate the behavior of TCLs and to assess the practical performance of
the proposed control solutions.

2. Simplified prediction model
This model will be used to synthesize a model predictive controller. A simplified model will be
made to predict future states at a relatively fast rate, enabling the implementation of the model in
real-time control.

2.1 Simulation model

In general, a thermostatically controlled load can be seen as a conditioned space or mass with a controlled
temperature ✓(t) that can be di↵erent from the ambient temperature ✓

amb.
Based on basic thermodynamic principles, the passive temperature dynamics will result in a decrease

of the temperature gradient ✓(t)� ✓

amb over time. By activation of a heat pump, energy can be added
or withdrawn from the system, respectively increasing or decreasing the temperature of the load. The
vast majority of TCLs are based on a heat pump that can only turn on or o↵, e.g. the compressor of a
domestic refrigerator. A schematic representation of the energy flows is presented in Figure 2.1.

The rate of the energy flows is determined by the parameters of the load. A parametrization that
is commonly used in the literature [2, 6, 20, 25] is:

• Absolute thermal resistance

R Ė

tcl

(t)
✓

amb

Ė

passive

(t)

Ė

active

(t)

Figure 2.1: Schematic energy flows of a TCL that decreases the temperature of the load when switched
on
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The absolute thermal resistance R in [K/W] is a measure of isolation of the load. It determines
how fast the passive temperature dynamics evolve.

• Thermal capacity
The thermal capacity C in [J/K] specifies the amount of heat required to change the temperature
of the TCL. The thermal capacity is a collection of intervening variables such as mass and specific
heat capacity.

• Rated electric power
The rated electric power p(t) in [W] is the power required by the TCL in its active state. It can
be a function of time.

• E�ciency factor
The dimensionless e�ciency factor ⌘ indicates the fraction of the rated electric power p(t) that can
e↵ectively be used to add or withdraw thermal energy from the load. The factor can take negative
values for cooling appliances such as refrigerators and positive values for heating appliances such
as electric water heaters.

Based on these parameters the passive and active energy flows can be expressed as:

Ė

passive

(t) = � 1

R

�
✓(t)� ✓

amb(t)
�

Ė

active

(t) = ⌘p(t)u(t)

(2.1)

in which u(t) 2 {0, 1} is a binary control input that denotes whether the heat pump of the TCL is
turned on or o↵. The sum of these two energy flows is the net energy change of the TCL, resulting in a
temperature change of the load:

Ė(t) = Ė

passive

(t) + Ė

active

(t) = C ✓̇(t) (2.2)

Temperature dynamics

The temperature dynamics of the load can be formulated by substituting (2.1) in (2.2), resulting in:

C ✓̇(t) = � 1

R

�
✓(t)� ✓

amb

�
+ ⌘p(t)u(t) (2.3)

which can be rewritten to:

✓̇(t) = � 1

RC

✓(t) +
1

RC

✓

amb +
1

RC

⌘Rp(t)u(t) (2.4)

This continuous-time expression can be discretized using a sample time t

s

. For the sake of notational
clarity we define the aggregated thermodynamic property:

↵ = e

�ts/RC (2.5)
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The discrete-time temperature dynamics can then be represented by:

✓(k + 1) = ↵✓(k) + (1� ↵)✓amb + (1� ↵)⌘Rp(k)u(k) (2.6)

or, formulated as a discontinuous di↵erential equation:

✓(k + 1) =

⇢
↵✓(k) + (1� ↵)✓amb if u(k) = 0
↵✓(k) + (1� ↵)✓amb + (1� ↵)⌘Rp(k) if u(k) = 1

(2.7)

Power dynamics

Based on the method presented in [2] it is assumed that the electric power demand p(k) can be modeled
using an exponential equation, if we define the variable:

� = e

�ts/tc,p (2.8)

in which t

c,p

is the time constant of the power dynamics. The overall power can then be expressed using
a formulation similar to (2.7):

p(k + 1) =

⇢
0 if u = 0
�p(k) + (1� �)p

ss

if u = 1
(2.9)

Thermostat control

The switching of the control signal u is based on hysteresis control. The objective is to keep the tem-
perature of the conditioned load at a certain reference temperature ✓

ref, allowing deviations within a
temperature deadband ✓

�

. For a cooling appliance with ✓

ref

< ✓

amb the control logic can be formulated
as:

u(k + 1) =

8
<

:

1 if ✓(k) > ✓

ref + 1

2

✓

�

0 if ✓(k) < ✓

ref � 1

2

✓

�

u(k) if ✓

ref � 1

2

T

�

 ✓(k)  ✓

ref + 1

2

✓

�

(2.10)

Hybrid automaton

Until now the TCL descriptions contain discrete inputs u(k) 2 {0, 1} and continuous temperature and
power dynamics ✓(k) and p(k). This combination is classified as a hybrid model. Various ways to for-
mulate such models have been described in [11]. One of the basic model formulations that can easily
include state resets is the hybrid automaton.
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u(k) = 0
x(k + 1) = A

1

x(k) + f

1

✓(k)  ✓

max

start
u(k) = 1

x(k + 1) = A

2

x(k) + f

2

✓(k) � ✓

min

G : ✓(k) > ✓

max

R : p(k) := p

max

G : ✓(k) < ✓

min

R : p(k) := 0

Figure 2.2: Hybrid automaton of a thermostatically controlled load

If we define a state vector x(k) = [✓(k), p(k)]T the dynamics in (2.7) and (2.9) can be combined:

x(k + 1) =

8
>>>><

>>>>:


↵ (1� ↵)⌘R
0 �

�
x(k) +


(1� ↵)✓amb

(1� �)p
ss

�
if u(k) = 1


↵ 0
0 0

�
x(k) +


(1� ↵)✓amb

0

�
if u(k) = 0

(2.11)

Combining the discrete input u(k) and continuous states results in a hybrid automaton (Figure 2.2).
The control law as seen in (2.10) is now implemented by using the guards G. The power is reinitialized
at each state change by the resets R, which can also be expressed as:

p(k) =

⇢
p

max if u(k)� u(k � 1) < 0
0 if u(k)� u(k � 1) > 0

(2.12)

2.2 Prediction model

To synthesize a model predictive controller a simpler model is made, based on an abstraction of the
hybrid automaton of the simulation model. The power demand is assumed to have a constant value
p(k) = p

c when the TCL is switched on, as seen in [6,20,24]. Now the state-reset policy can be omitted
and the state-space model is can be simplified to:

✓(k + 1) =
⇥
↵

⇤
| {z }

A

✓(k) +
⇥
(1� ↵)⌘Rp

c

⇤
| {z }

B

u(k) + (1� ↵)✓amb

| {z }
f

y(k) =


1
0

�

| {z }
C

✓(k) +


0
p

c

�

| {z }
D

u(k)
(2.13)

in which the output y(k) = [✓(k), p(k)]T . This is a linear a�ne state-space model with binary inputs
that can be used to predict future states in a very straightforward way.
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Figure 2.3: Experimental setup

2.3 Open-loop simulations and validation

Both the simulation model and the prediction model are now validated using measured data from an ex-
perimental setup. Since the thermal properties of di↵erent TCLs will vary the objective of the validation
is not to get an exact model fit but to assess the ability to reproduce the main dynamics and charac-
teristics. The experimental setup consists of an ordinary domestic refrigerator. Both state variables are
measured and sent to an online database, hosted and managed by Sense Observation Systems1.

1. Temperature
The temperature inside the refrigerator is measured using a simple LM35 temperature sensor that
is connected to an Arduino2 board. The Arduino board is equipped with a WiFi connection using
an Electric Imp3, this enables it to send all data to the online database.

2. Power
The electric power demand of the refrigerator is measured using a plug-in kit manufactured by
PlugWise4. The collected data is also sent to the online database.

The sensor data is accessible through an online monitor on a custom website5, and can be imported
directly to MATLAB for analysis. Figure 2.3 gives an impression of the experimental setup.

1
http://www.sense-os.nl

2
http://www.arduino.cc

3
http://www.electricimp.com

4
http://www.plugwise.com

5
http://www.sensepower.herokuapp.com
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Table 2.1: TCL parameters

R 1.7 K/W
C 3200 W/K
✓

ref 5.25 �C
✓

�

3.7 �C
⌘ -0.5 -
p

max 82 W
p

min 50 W
tc,p 300 s

Table 2.2: Variance accounted for per model and state

model type state calibration: VAF [%] validation: VAF [%]

simulation
temperature ✓ 97.2 88.2
power p 52.5 33.2

prediction
temperature ✓ 87.8 91.7
power p 39.5 51.6

Model parameters

Initial estimates of the TCL parameters are based on physically feasible values. During a second iteration
these variables are then manually adjusted to fit the calibration data from the measurement setup. The
resulting values are shown in Table 2.1.

It should be noted that the refrigerator that was used for the experimental setup was almost empty.
More content will significantly increase the thermal capacity C. For practical applications the variation
of these parameters should arguably be accounted for by online parameter estimation.

Open-loop simulations

Both the simulation model and the prediction model are now used for open-loop simulations. Figure 2.4
shows the results of those simulations together with measured data from the experimental setup.

With respect to the TCL temperature, both the simulation model and the prediction model are able
to approximate the measured values with acceptable accuracy. It seems that some small hysteresis e↵ects
at the input switchings are not accounted for in the models.

Looking at the simulated power demand, the simplifications that were made to formulate the predic-
tion model are clearly visible. Using this prediction model for model predictive control will not enable
the TCL to anticipate the relatively high start-up power. However, it is unclear whether the high initial
power demand is present across di↵erent types of TCLs or limited to refrigerators and freezers. To an-
alyze the performance of the models quantitatively the variance accounted for (VAF) of each simulated
output variable ŷi with respect to the measurements yi is computed using:

VAFi =

✓
1� var (yi � ŷi)

var (yi)

◆
· 100% (2.14)

Computing these values for all states independently yields the values in Table 2.2. These results show
that the temperature dynamics can be described accurately using both models. With respect to the
power dynamics the prediction model counterintuitively performs better than the simulation model.

2.4 Conclusions

In this chapter two models have been constructed. A detailed simulation model is used to simulate the
dynamics of a TCL. A simpler prediction model, in which the power demand of the TCL is assumed to

18



06:30 07:00 07:30 08:00 08:30
0

2

4

6

8

time [hh:mm]

te
m

p
e
ra

tu
re

 [
°
C

]

 

 

Simulation model
Prediction model
Measured data

06:30 07:00 07:30 08:00 08:30
0

20

40

60

80

100

time [hh:mm]

p
o
w

e
r 

[W
]

 

 

Simulation model
Prediction model
Measured data

(a) Comparing open-loop simulation results and measured calibration data

03:30 04:00 04:30 05:00 05:30
0

2

4

6

8

time [hh:mm]

te
m

p
e

ra
tu

re
 [

°
C

]

 

 

Simulation model
Prediction model
Measured data

03:15 03:30 03:45 04:00 04:15 04:30 04:45 05:00 05:15 05:30 05:45
0

20

40

60

80

100

time [hh:mm]

p
o

w
e

r 
[W

]

 

 

Simulation model
Prediction model
Measured data

(b) Comparing open-loop simulation results and measured validation data

Figure 2.4: Comparison of the TCL model simulations with measured data
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have a constant value, is made to facilitate the design of a model predictive controller. Both models have
been used for open-loop simulations. The simulation results have been compared to measured data from
an experimental refrigerator, showing that the models are capable of reproducing the main dynamics
and characteristics of a TCL.
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Chapter 3

Model Predictive Control for
Demand Response

Model predictive control (MPC) is an advanced type of control in which a sequence of future inputs
is determined by optimizing a user-defined objective that may be a function of predicted model states,
outputs, and/or inputs. The system dynamics are predicted using a dynamic model of the controlled
system. Among the main benefits of this type of control is the ability to anticipate on future states and/or
references and to optimize current control actions accordingly. This is an extremely useful property for
demand response. Moreover, the single optimization problem provides an easy way to directly include
additional constraints and objectives.

The amount of time steps into the future that the dynamics are predicted can be limited by a
prediction horizon N

p

. The amount of input variables that is optimized for can be limited by the control
horizon N

c

, such that N
c

 N

p

; this principle is illustrated in Figure 3.1.

At every time step k the open-loop optimal input sequence u

⇤ is computed. Of this sequence only
the first input u(k) is applied to the system. At the next time step k + 1 the optimization problem is
solved again. This method is commonly referred to as a receding-horizon approach.

3.1 Controller design

Objective function

The main objective of the TCL controller is to match the power demand of the TCL to a given power
supply. It is assumed that a forecast of the available power is provided. We define the predicted power
demand p̂(k) of the TCL and the forecasted power supply p

ref(k) as two vectors. Since the power demand
is directly related to the inputs, these vectors contain predicted or forecasted values for every timestep

future inputs

predicted states

past states

past inputs

state reference

k

k+N

c

k

+N

p

Figure 3.1: Model predictive control
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k + `|k of the prediction horizon such that ` = {0, 1, 2, . . . , N
p

� 1}, we have:

p̂(k) =

2

666664

p̂(k|k)
p̂(k + 1|k)
p̂(k + 2|k)
...
p̂(k +N

p

� 1|k)

3

777775
, p

ref(k) =

2

666664

p

ref(k|k)
p

ref(k + 1|k)
p

ref(k + 2|k)
...
p

ref(k +N

p

� 1|k)

3

777775
(3.1)

The main objective can then be formulated as an L1 norm, equal to the sum of the absolute di↵erences
for each step of the prediction horizon:

J(k) =

Np�1X

`=0

��
p

ref(k + `|k)� p̂(k + `|k)
�� =

��
p

ref(k)� p̂(k)
��
1

(3.2)

In addition to the main objective, secondary objectives can be added to this objective function, i.e.
maintaining a certain reference temperature or minimizing the amount of switches. Such a composite
objective function might force the controller to make compromises with respect to the power reference
tracking performance. To assess this performance the secondary objectives are therefore included only
at a later stage in this thesis.

Constraints

The optimization of the objective function is subject to a main constraint; the temperature of the TCL
should never exceed certain temperature limits. These limits are often user-defined, e.g. comfort limits
for temperature control of rooms or the temperature of hot water in electric water heaters. We define
the predicted temperature trajectory vector as:

✓̂(k) =

2

6664

✓̂(k + 1|k)
✓̂(k + 2|k)
...
✓̂(k +N

p

|k)

3

7775
(3.3)

and the constraint as:

✓

min  ✓̂(k)  ✓

max (3.4)

It should be noted that although the comfort limits in this constraint are assumed to be static over
the entire prediction horizon, an extension to time dependent constraints can be implemented in a
straightforward and similar way.

3.2 Mixed integer linear program

To optimize the objective function in (3.2) the future states need to be predicted. Moreover, the objective
function contains absolute terms that complicate the optimization. In this section these issues will be
resolved by rewriting the problem into a mixed integer linear program (MILP).

22



Predicting future states

Prediction of the future temperature ✓̂(k) and power demand p̂(k) is done using a recursive application
of the prediction model in (2.13). Based on the current temperature ✓(k) and a certain input u(k) the
next state can be expressed as:

✓̂(k + 1|k) = A✓(k) +Bu(k) + f (3.5)

The temperature in the time step after that can be predicted based on the preceding state:

✓̂(k + 2|k) = A✓̂(k + 1|k) +Bu(k + 1) + f (3.6)

Substituting (3.5) in (3.6) yields:

✓̂(k + 2|k) = A

�
A✓(k) +Bu(k) + f

�
+Bu(k + 1) + f (3.7)

Generalizing this expression for all j 2 {1, 2, . . . , N
p

} results in:

✓̂(k + j|k) = A

j
✓(k) +

j�1X

i=0

A

j�1�i (Bu(k + i) + f) (3.8)

Predicting future outputs

Knowing the state development of the temperature, the future outputs for ` 2 {0, 1, 2, . . . , N
p

� 1} can
be predicted using the output equation of the a�ne state space prediction model in (2.13):

ŷ(k + `) = C

 
A

`
✓(k) +

`�1X

i=0

A

`�1�i (Bu(k + i) + f)

!
+Du(k + `) (3.9)

Collecting the terms that result from this summation yields the matrices M

1

, M

2

, and M

3

. These
matrices can be used to compute the outputs based on the current temperature ✓(k) and the sequence
of future inputs u(k) in an a�ne way:

ŷ(k) = M

1

✓(k) +M

2

u(k) +M

3

(3.10)

These predicted future outputs can be used to extract ✓̂(k) and p̂(k).
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Slack variables

The absolute terms of in the objective function can be rewritten as a linear objective function subject
to additional constraints by introducing an auxiliary slack variable ⇢ such that:

�⇢(k)  p

ref(k)� p(k)  ⇢(k) (3.11)

By introducing a new vector of optimization variables that includes the slack variables, v(k) = [u(k),⇢(k)]T ,
the objective (3.2) can then be rewritten in a linear form:

J(k) =
⇥
0 1

⇤  u(k)
⇢

p

(k)

�
= �v(k) (3.12)

Synthesizing MILP

The expressions in (3.4), (3.10), and (3.11) can be aggregated in a single set of linear inequalities:

A

ineq

v(k)  b

ineq

(3.13)

The resulting optimization problem is a mixed integer linear program (MILP) of the form:

min
v(k)

�v(k)

s.t.
A

ineq

v(k)  b

ineq

(k)
u(k) 2 {0, 1}Np

(3.14)

This MILP is solved in MATLAB1 using the MPT 3.0 toolbox [18] and the GLPK solver2.

3.3 Closed-loop simulations

The TCL parameters used in the closed-loop simulations are identical to those that have been used in
the open-loop simulations (Table 2.1). Since the the TCL inputs are restricted to binary variables, If the
control horizon is smaller than the prediction horizon, the TCL inputs at k+j for j = N

c

, . . . , N

p

�1 will
be constrained to either all o↵ or all on. This will result in a continuous increase or decrease of the TCL
temperature, may result in infeasible values or suboptimal solutions. This is illustrated in Figure 3.2.
The control horizon is therefore chosen to be equal to the prediction horizon.

The length of both horizons is a trade-o↵ between the speed of computation and the ability to
anticipate on future events. Initial values of N

p

= N

c

= 8 are taken because they yield relatively fast
results. Moreover, a sample time of t

s

= 60 s enables the controller to anticipate on upcoming changes
in the power supply. The controller is tested with three di↵erent power reference signals:

1. A square wave power reference supply

2. A cosine power reference supply

3. A constant power reference supply

1MATLAB Release 2013a, The MathWorks, Inc., Natick, Massachusetts, United States.
2GNU Linear Programming Kit, http://www.gnu.org/software/glpk/
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Figure 3.2: A control horizon that is smaller than the prediction horizon is likely to yield infeasible
results due to the binary inputs of the TCL

Figure 3.3a and Figure 3.3b show that once the reference power becomes higher than approximately
0.5pc the TCL is likely to switch on. The simulation results in both figures show cases in which the
lower temperature constraint restricts the TCLs ability to switch on and to optimally track the reference
power supply.

In Figure 3.3c the constant reference power supply is relatively low. Since the binary control action
only allows values of either 0 or p

max the TCL tries to stay o↵. At some point the upper temperature
constraint is threatened to be violated and the TCL temporarily switches on to prevent this. To illustrate
the impact of the restriction to binary inputs another closed-loop simulation is done in which the binary
constraint is relaxed to allow real inputs. Note that the simulation model only has discrete input states
u(k) 2 {0, 1} and therefore these closed-loop simulations are done using the prediction model.

The results of these closed-loop simulations (Figure 3.4) show a reference tracking performance that
is significantly better. However, in all cases the lower temperature constraint makes it impossible to keep
tracking the reference signal at all times.

3.4 Reachable power profiles

The closed-loop simulations have shown that regardless of the hybrid properties of the model, certain
power profiles cannot be matched due to the temperature constraints. While this may not necessarily
be problematic when this occurs infrequently, a structurally unreachable power profile will make the
demand response controller unusable. This issue is largely unmentioned in the literature.

In this section critical characteristics of the power profiles are investigated, resulting in initial guide-
lines to understand the limitations of certain combinations of supply and TCL demand. These guidelines
can be used when assessing the performance of the control methods later in this thesis. The following
three characteristics have been found:

1. Average power
To compute the minimum and maximum average power demand3 we relax the binary constraint on
the inputs and allow real valued inputs, enabling a steady state temperature at which ✓(k + 1) =
✓(k). For a cooling TCL (with ⌘ < 0 and ✓

min

< ✓

max

< ✓

amb) at the minimum or maximum
steady state temperature we assume respectively a maximum and minimum power demand:

p

max =
✓

min � ✓

amb

⌘R

p

min =
✓

max � ✓

amb

⌘R

(3.15)

We assume that these values are equal to the minimum or maximum average power demand p̄(k)

3Theoretically any real input between 0 and 1 can be achieved by using binary inputs and pulse width modulation.
However, this approach requires rapid switching which is physically unfeasible due to a minimum dwell time.
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(b) Cosine reference supply
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(c) Constant reference

Figure 3.3: Closed-loop simulations using a TCL with binary inputs and various references.
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(a) Square reference supply
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(b) Cosine reference supply
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(c) Constant reference supply

Figure 3.4: Closed-loop simulations using a TCL with real valued inputs and various references
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for a TCL with infinitely fast switched inputs at either of the temperature boundaries. One of
the criteria for a usable controller is therefore that the average power supply p̄

ref is between this
minimum and maximum average demand.

2. Power variations
Apart from average power values there are limitations to the variation with respect to that average.
Naturally the reference power cannot exceed the minimum or maximum power demand of the TCL,
so that pmin  p

ref(k)  p

max.

3. Periodicity of the power profile
The reference supply profile is also restricted by the speed of the TCL temperature dynamics.
Given certain dynamics and constraints, all TCLs have a maximum time that can be taken to
move the temperature from its upper to lower temperature and back. Since TCLs cannot stay on
or o↵ for longer, any periodical power supply with a period that is longer than the maximum on/o↵
cycle time of a TCL cannot be matched its demand.

3.5 Model predictive control of multiple appliances

Up to this point the work has been focused on the control of the demand response for a single TCL. Two
of the main advantages of controlling multiple TCLs are:

1. Increased inpact
Controlling more TCLs has the advantage of having a larger impact. However, as discussed in the
literature review, aggregating many individually controlled appliances in a decentralized way may
result in instabilities. Therefore some coordination among the appliances is required.

2. Reduced relative demand response error
In the previous closed-loop simulations we have seen that due to the binary inputs of the TCL, the
controller is not able to accurately match the reference signals. By having more appliances, the
relative error due to the binary inputs can be reduced.

One of the ways to control multiple TCLs is to use centralized MPC. In centralized MPC the dynamics
of all TCLs are combined into a single global model. A straightforward approach to formulate such a
model is to concatenate the local system states in a single global state vector. Since there is no dynamic
coupling or coupling in the inputs this results in block diagonal state space matrices for the global system.

We consider a set of N appliances. By taking the individual appliances n 2 {1, 2, . . . , N}, we can
define a global state and global input as:

x
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The evolution of this state and outputs can then be described by:
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This state-space formulation is used to synthesize the centralized controller by using the method that
has been described in Section 3.1 and Section 3.2.

Since all global dynamics are included in a single MILP, centralized MPC is assumed to yield an
optimal solution given that the solver has su�cient time to converge. However, as previously discussed in
Chapter 1, the centralized approach has disadvantages with respect to computational speed, robustness,
and adaptivity. The next chapter will therefore focus on distributed control methods. To evaluate the
performance of these distributed methods, centralized MPC will serve as a reference approach to assess
the relative optimality of the distributed approaches.

3.6 Conclusions

Based on the closed-loop simulations the following conclusions are drawn:

1. The hybrid nature of the TCL model with binary inputs severely restricts the ability of a single
TCL to track a certain reference supply. By using multiple appliances the relative error may be
decreased.

2. The temperature of the TCL with current parameters and binary inputs does not converge to a
static value. Instead a certain switching policy or pulse-width modulation approach is required to
maintain feasible temperatures.

3. A TCL may not be able to completely match certain power supplies due to its temperature con-
straints. To avoid this and fully benefit from the demand response potential, both the power supply
profile and TCL demand should have similar average power levels and variability.

4. To control multiple TCLs, all individual TCL models can be aggregated in a single global model.
This centralized MPC approach is useful to benchmark alternative DMPC methods and to assess
their relative (sub)optimality.
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Chapter 4

Distributed Model Predictive
Control for Demand Reponse

Distributed model predictive control (DMPC) is an alternative for centralized MPC as seen in Chapter 3.
The aim of this chapter is to synthesize a robust DMPC method that can handle the hybrid properties of
the prediction models that were used in the previous chapters. First, a general global system description
is given, together with a general formulation of the global objective of the demand response. After this,
a DMPC method from the literature will be applied to this global system and objective. Various local
formulations of the global objective and both parallel and serial implementations of the DMPC algorithm
will be investigated and the various properties and benefits of these methods will be evaluated. The
chapter will conclude with the proposal of a DMPC method to be tested in Chapter 5.

4.1 Global system and objective

As previously seen in Chapter 3, we consider the set N that contains N appliances. Instead of a single
centralized controller, each appliance n 2 N has its own local controller. These controllers are able to
communicate with all other controllers m 2 N\{n}. We assume that all systems n 2 N are dynamically
uncoupled and that the local power demand pn(k) is a function of the local input un(k) only:

pn(k) = fn(un(k)) 8n 2 N (4.1)

The entire set of appliances N is subject to a global power reference signal pref
g

(k) indicating the available
power supply. The global power demand of the appliances is expressed as the sum of the local power
demands:

p

g

(k) =
X

n2N
pn(k) (4.2)

The main objective of the demand response is to minimize the mismatch between the global supply and
global demand by controlling that demand accordingly:

min
pg(k)

��
p

ref

g

(k)� p

g

(k)
�� (4.3)

A schematic representation of the DMPC structure with N = 3 appliances is presented in Figure 4.1.
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Figure 4.1: Schematic overview of a DMPC stucture with N = 3 appliances

Based on the literature review in Chapter 1 it was concluded that FC-DMPC as proposed in [37] would
be a suitable starting point to develop distributed control methods for demand response.

4.2 Feasible-Cooperation DMPC

Feasible-Cooperation DMPC is a distributed control method proposed in [37]. The core principle of this
method is that every controller n locally optimizes the same global objective function J

g

for its local
optimization variables Sn. This optimization can be done over multiple iterations i within each time
step k.

During each iteration i, each controller n assumes that the interconnecting variables Sm of the other
controllers m remain equal to those from the previous iteration, Si�1

m . For brevity of the notation in the
remainder of this chapter, the dependency on the time variable k is dropped from the notation. The
local optimization problem can then be formulated by:

S

i
n = argmin

Sn

J

g

(Sn, S
i�1

m ) (4.4)

For discrete linear systems this method has been shown to converge to an optimal solution, the perfor-
mance of which is equal to the centralized MPC solution. Since the local controllers do not compete but
cooperate towards a common global goal, this solution is Pareto optimal from a game-theoretic point of
view [31]. To reach this optimal solution a large number of iterations may be required. In some cases the
sample time may not be long enough to allow this, forcing the iterations to terminate at a suboptimal
solution. By introducing a terminal penalty in the optimization problem this sub-optimal solution is
assured to be feasible and stable. The combination of these properties make FC-DMPC a good starting
point to look at control methods for demand response of hybrid systems.
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4.3 Formulating objective functions

Coupling among local systems can be through the objective function, the dynamics, the constraints, or
a combination of those. FC-DMPC requires a global objective function J

g

. All TCLs are assumed to
by dynamically uncoupled as seen in (4.1) and all constraints i.e. on the temperature of the appliance,
are purely local. This means that the global objective function should be a function of at least one local
variable from each TCL to include it in the FC-DMPC framework.

The way in which the global objective is formulated and translated to locally optimizable parts is
an important part of the control system design. From an abstract point of view there are two main
approaches to do this:

1. Bottom-up
Here, existing local objective functions of the individual subsystems are aggregated into a single
global objective function.

2. Top-down
Here, a main global objective function is used as a starting point to formulate locally optimizable
parts.

In this section both approaches will be reviewed in more detail with respect to the main objective as
formulate in (4.3), highlighting possible shortcomings and opportunities.

4.3.1 Aggerating local objectives

In [37] it is stated that the simplest approach to formulate the global objective function is to take a
weighted sum of the existing local objectives:

J

g

=
X

n2N
wnJn(pn), wn > 0,

X

n2N
wn = 1 (4.5)

If we substitute the local objective function (3.2) that has been used in Chapter 3 in this expression this
results in:

J

g

(k) =
X

n2N
wn

��
p

ref

n (k)� p̂n(k)
��
1

(4.6)

The resulting global objective function contains local power reference terms p

ref

n (k). However, the con-
sidered system as introduced at the beginning of this chapter is only o↵ered a global power reference
signal pref

g

(k). Therefore, to optimize this global objective function (4.6) locally, the global power ref-
erence must be decomposed into N separate references. This means that even when using a bottom-up
approach a decomposition is required.

4.3.2 Decomposing a global objective

An alternative to aggregating the local objective functions is to start from the main objective function in
(4.3) and to decompose it into locally optimizable parts. The decomposition of a global reference power
in an L1 norm objective function has been addressed in [13]. In that paper, the aim is to reduce the
required communication among the controllers. The following three methods are proposed:

1. Static local power references with no information

2. Dynamic local power references with local information.

3. Global references with global information.
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Figure 4.2: Synchronized dynamics of N = 10 appliances due to decentralized control resulting from a
static decomposition of the global power reference

In this section these three decomposition approaches will be assessed with respect to the demand response
problem of TCLs with binary inputs. It should be noted that this approach was originally proposed for
systems with real inputs.

Static local power references

A first approach consists of dividing the global power reference into static local parts that are proportional
to the average power demand p̄n of the individual loads:

p

ref

n (k) =
p̄nP

n2N p̄n
·
X

n2N
p

ref

n (k) (4.7)

The result of the static decomposition of the global power reference is that the entire global objective
function will become decoupled. The reason for this is that the variables p̂m(k) of the other controllers
are assumed to be static over each iteration. This results in a constant term in the local optimization
problems that can be omitted from the optimization:

p

⇤
n(k) = arg min

ˆpn(k)

0

@
wn

��
p

ref

n (k)� p̂n(k)
��
1

+
X

m2N\{n}

wm

��
p

ref

m (k)� p̂m(k)
��
1

1

A

= arg min
ˆpn(k)

��
p

ref

n (k)� p̂n(k)
��
1

(4.8)

In the considered case the static decomposition of the power reference will therefore defeat the object of
FC-DMPC and essentially transforms it into a decentralized control scheme. In Chapter 3 it was shown
that binary inputs pose significant limitations on the ability of a single TCL to track certain reference
signals. Having multiple (identical) appliances with a decentralized control scheme will not improve these
results. The appliances may even synchronize, resulting in the unstable oscillating behavior as seen in
Figure 4.2.
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Figure 4.3: Limited communication where a controller exchanges unidirectional information with its
neightbors only

Dynamic local power references

An alternative approach is to let the appliances negotiate about the decomposition of the power reference.
This is done by expanding the local objective function in (4.8) with terms that allow controller n to trade
power references with its neighboring controllers in Nn ⇢ N , where we assume that all connections of
n with its neighbors in Nn are managed either by n or by one of its neighbors. The set of connections
managed by n is denoted by �n. This principle is illustrated in Figure 4.3 and formalized by:

min
pn(k),�nm(k)

������
p

ref

n (k) +
X

m2�n

�nm(k)�
X

m2Nn\ �n

�mn(k)� p̂n(k)

������
1

(4.9)

The authors of [13] argue that when the connectivity matrix is sparse, meaning that the number of
neighbors in Nn is smaller than the total number of systems in N\{n}, this method may lead to reduced
communication requirements. However, with respect to the case of demand response of hybrid systems,
two potential caveats can be identified:

1. Undefined neighborhood sets
In the case of demand response of a large group of appliances that are all connected to the internet,
the set of neighbors Nn of each appliance is not clearly defined. Indeed, all appliances are assumed
to be able to connect to all other appliances regardless of spatial or structural factors. This is
not necessarily a problem, as having the ability to connect to all other controllers does not require
actually doing so. Instead a subset of neighbors can be chosen based on arbitrary selection criteria
and performance may depend heavily on the choice of the neighboring set.

2. Negotiations among controllers
Apart from exchanging local inputs controllers communicate the optimal power reference terms
�nm of the connections �n that they manage. In the literature review it was found that existing
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Figure 4.4: Global communication where every controller is able to exchange information with all other
controllers

DMPC methods for hybrid systems that make use of negotiations on interconnecting variables
may not converge due to big jumps in the negotiations whenever local controllers switch their
inputs [5,21]. The approach in [13] is di↵erent since every connection among controllers is managed
by an unique controller. However, oscillations of the negotiations can still take place due to loops
in the communication graph, i.e. three controllers that are connected in a circle can keep passing
a certain undesired value around in that circle restricting the convergence.

Global reference

Assuming that all appliances can communicate to each other as seen in Figure 4.4 can give controllers
access to global information. In our case this means that while local controllers optimize their own inputs
they are aware of the global system state. Instead of decomposing the global objective into separate local
objectives, global information also enables the use of the original main objective in (4.3) directly. Since
the global power demand is equal to the sum of all local power demands the global objective function
can be written as:

J

g

(k) =

�����p
ref

g

(k)�
X

n2N
p̂n(k)

�����
1

(4.10)

Locally optimizing this function based FC-DMPC means solving:

p̂

i
n = arg min

ˆpn(k)

������
p

ref(k)� p̂

i�1

n (k)�
X

m2N\{n}

p̂

i�1

m (k)

������
1

(4.11)
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While global communication within fully connected graphs might be the most straightforward approach
to gain global information, alternative approaches are possible that can reduce the amount of required
communication.

On of these is the introduction of a central blackboard coordinator that is used to aggregate the
local demands. Each controller is then able to look up the current global state at this centralized agent
instead of requesting information from all other controllers.

4.4 Parallel and serial update algorithms

In the majority of DMPC methods in the literature that have been applied to demand response, all
controllers optimize their inputs in parallel [5,21,37]. This means that at every iteration i for each time
step k all local controllers n update their input schedules synchronously. In this section the consequences
of such using this method for the demand response of hybrid systems will be evaluated and alternatives
will be evaluated.

Parallel updates

In the parallel approach all local controllers synchrnously update their optimal inputs at every iteration
i by solving a local MILP. After all controllers have updated their schedules they exchange the required
information with other controllers. The parallel update algorithm is presented in Algorithm 1.

Algorithm 1 Parallel update scheme

1: initialization: p
g

(k) = 0
2: for each time step k do
3: for each iteration i do
4: for each subsystem n do
5: solve MILP (4.11)
6: broadcast required power pn

i (k)
7: end for
8: update global power p

g

(k) by aggregating all optimized local demands p
n

(k)
9: end for

10: for each TCL subsystem n do
11: simulate one time step using optimal input
12: end for
13: end for

Using the parallel implementation of Feasible-Cooperation DMPC with the global objective function
in (4.11) results in some complications. At each iteration all controllers will assess the possibility to
switch on or o↵ based on the evaluation of:

�����p
ref

g

(k)�
X

n2N
p̂n(k)

�����
1

(4.12)

When the di↵erence between the two terms is too large, all controllers will, if their temperature con-
straints allow it, switch on or o↵ at the same time. They do this because at every iteration they have
the same information. At the next iteration this may lead to an overshoot in the objective function.
This overshoot may force controllers to synchronously reconsider their switch, leading them back to their
original input. This switching ultimately leads to non-convergence of the iterations and extremely poor
performance of the DMPC implementation. This e↵ect is illustrated in Figure 4.5a, here the open loop
predictions resulting from all local optimizations oscillate over the iterations without converging to the
reference power.
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An alternative approach would be to make use of a serial implementation, in which local controllers
update their inputs one after the other. In [28] the authors have shown that in some cases such an
approach is beneficial with respect to a parallel one.

Serial updates

In a serial implementation the local controllers update their inputs in sequence. The global information
on the current mismatch between supply and demand is updated and communicated after each local
optimization. This scheme has been used in [22,28].

The serial implementation of FC-DMPC is shown in Algorithm 2. The di↵erence with Algorithm 1
can be found on line 7: using a serial approach the global power demand is updated after each controller
updates its control inputs instead of only after all controllers have updated their inputs. This principle
is also illustrated in Figure 4.5b, here the additional grey lines represent the aggregate planning after
device n has updated its schedule. At the first iteration every controller makes its initial planning, the
following iterations are used to make adjustments to the initial schedule. In this example the solution
converged at the second iteration.

Algorithm 2 Serial update scheme

1: initialization: p
g

(k) = 0
2: for each time step k do
3: for each iteration i do
4: for each subsystem n do
5: solve MILP (3.13)
6: broadcast required power pi

n(k)
7: update global power p

g

(k) by aggregating all optimized local demands p
n

(k)
8: end for
9: end for

10: for each TCL subsystem n do
11: simulate one time step using optimal input
12: end for
13: end for

Using a serial implementation of FC-DMPC to control the demand response of a population of TCLs
described by a hybrid model is expected to yield the following advantages:

1. Convergence of the global solution
The serial scheme is likely to prevent the synchronization of controllers since at the start of each
local optimization all controllers have di↵erent information, depending on their location in the
update sequence. This may facilitate the convergence of the global solution.

2. Reduced communication whilst maintaining the distributed nature
The order in which local controllers update their optimal inputs can be used as the basis to
define their neighbors. Every controller can then pass its updated global information on to the
next controller, omitting the need for global communication or a centralized blackboard agent to
maintain the distributed properties of the controller.

In the next chapter both the serial and parallel implementation of FC-DMPC will be used for closed-loop
simulations and compared to alternative methods.

4.5 Conclusions

Based on the findings in this chapter the following conclusions are drawn:

1. The main principle of FC-DMPC is that every controller locally optimizes a global objective func-
tion. In this chapter di↵erent approaches to formulate such a global objective function have been
investigated. In our case, the approaches aimed at decomposing the global power reference into
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(a) Parallel updates within each iteration
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(b) Sequential updates within each iteration

Figure 4.5: Multiple iterations i = 1, 2, 3 within a single timestep (k = 3), the sequential scheme has
converged at the second iteration iteration while the solution of the parralel scheme oscillates. The grey
open-loop predictions represent the aggregate demand once device n has optimized its schedule
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local parts either result in decentralized control or are unlikely to converge due to the hybrid
properties of the TCL models.

2. An alternative approach is to maintain a single global reference power and to support local optimiza-
tion by providing global information locally. Two methods to achieve this are global communication
or a centralized blackboard agent.

3. The parallel implementation of FC-DMPC with a coupled objective function to control the demand
response of TCLs is likely to lead to synchronization of their actions and non-converging oscillations
of the objective function value. The reason for this is that all controllers have access to the same
global information indicating whether there is a global shortage or surplus of power. All controllers
will therefore have the same incentive, resulting in an undesirable synchronization of the loads.

4. A serial implementation of this method will force controllers to update their optimal schedule on at
the time. This is expected to yield two benefits: first, it facilitates the convergence of the objective
function value and second it is able to relax the need for global communication whilst maintaining
the distributed nature of the controller.
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Chapter 5

Simulations and Comparison

Both the parallel as well as the serial FC-DMPC approach that have been developed in the previous
chapter will be used for closed-loop simulations. The result of these simulations will be compared to
a commonly used alternative method from the literature as well as two benchmark methods, based on
selected performance criteria.

Two types of closed-loop simulations will be presented. They can be distinguished by the choice of
the power reference supply signal:

• Synthetic reference supply
To compare the di↵erent controllers they will initially be tested using a synthetic reference signal
that will yield feasible results with all methods.

• Reference supply based on real data
To assess the relevance and potential of the methods they will also be applied to a case study based
on real data.

5.1 Simulated control methods

The control methods that will be used for closed-loop simulations can be divided into two main categories:
benchmark methods and various alternative DMPC methods. The used benchmark methods are:

1. Hysteresis control
This is the original control law of a TCL based on a thermostat as described in Chapter 2. This
decentralized method provides a performance reference that can be used to assess whether or not
improvements have been made at all.

2. Centralized MPC
This centralized control method as described in Chapter 3 is based on a single large model that
includes all system dynamics and all constraints. This approach should therefore lead to optimal
performance with respect to the optimization of the global objective function. This provides a
performance benchmark to assess the relative optimality of the DMPC methods.

The tested DMPC methods are:

1. Dual-decomposition DMPC
This commonly used DMPC method from the literature has already been to demand response
problems concerning hybrid systems [5,21]; in this case the implementation as found in [5] is used.

2. Parallel FC-DMPC
This is the parallel control approach with a global power reference and global information as
presented in Chapter 4.

3. Serial FC-DMPC
Here we apply the serial control approach with a global power reference and global information as
presented in Chapter 4.

41



5.2 Performance criteria

The control methods that are used to run the closed-loop simulations will be compared based on the
following performance criteria:

1. Global objective function values
This means evaluating

J

cl

g

=
KX

k=1

�����p
ref(k)�

X

n2N
pn(k)

����� (5.1)

in which K is the total number of time steps used in the closed-loop simulations.

2. Computational speed
The time required to compute the control inputs at each time step k using MATLAB1 with help of
the MPT 3.0 toolbox [18] and the GLPK solver2 on a single machine3. A solution is reached when
one of the following two stopping criteria is satisfied:

(a) The solution has converged in the sense that the value of the global objective function does
not change in the next iterations:

J

i
g

= J

i�1

g

(5.2)

(b) A maximum number of iterations is reached:

i = i

max (5.3)

Distributed approaches in which multiple optimizations are performed in parallel may be limited
by the fact that all computations are done using a single machine. To correct for this, the total
computation time will be the sum of the maximum local optimization times per iteration.

3. Communication requirements
The amount of communication links that need to be initiated and the size of the transmitted data
that is needed per time step k.

5.3 Synthetic reference supplies

Formulation of the reference power profile

Following up on the initial analysis for reachable reference powers in Chapter 3, both synthetic reference
signals are constructed using an average power p̄

g

that is within the average power range of the TCL
population and a certain deviation from that average. Here, the deviation is described by a cosine with
period T and an amplitude a that scales with the size of the TCL population N :

p

ref

g

(k) = p̄g + a ·N · cos
✓
1

T

2⇡

◆
(5.4)

1MATLAB Release 2013a, The MathWorks, Inc., Natick, Massachusetts, United States.
2GNU Linear Programming Kit, http://www.gnu.org/software/glpk/
32 GHz Intel Core 2 Duo, 4 GB 1067 MHz DDR3
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Apart from using a single cosine reference, an additional reference signal consisting of a sum of cosines
is used, described by:

p

ref

g

(k) = p̄g +
5X

i=1

ai ·N · cos
✓

1

Ti
2⇡

◆
(5.5)

Simulation parameters

For the single cosine power reference signal the prediction horizon and control horizon will be equal to
the values that have been used in the previous chapters i.e. N

p

= N

c

= 5. The reason for this is that the
number of integer variables in the MILP for centralized MPC increases with the amount of appliances.
For populations larger than N = 5 the problem becomes too large to solve on the available machine
and therefore this population size is used for the initial comparison. The second power reference signal
consisting of the sum of cosines is used with a larger population size of N = 10 appliances. The reason
for this is that complex reference signals need larger TCL populations to decrease the relative error due
to their binary inputs, as seen in Chapter 3.

The simulation time step size is t

s

= 60 s. The total number of simulation time steps is K = 180.
This is su�ciently large to encompass multiple oscillations of the power reference signal and to reduce
the e↵ect of the initialization.

The initial conditions of the appliances are equal for all simulations. The initial temperatures of the
appliances are evenly spread on the interval [✓min

, ✓

max].

5.3.1 Performance evaluation

Value function

The closed-loop power dynamics that are presented in Figure 5.2 show that some of the DMPC methods
result in a highly variable power demand. The results from dual-decomposition DMPC (Figure 5.1c)
and parallel FC-DMPC (Figure 5.1d) show large deviations from the optimal power trajectory defined
by the centralized MPC solution presented in Figure 5.1b. Moreover, their performance appears to be
even worse than the reference performance of hysteresis control (Figure 5.1a).

Among the simulated DMPC methods the only method that appears to converge towards the cen-
tralized performance is serial FC-DMPC. As suggested in Chapter 4, one of the main drivers for this
convergence is the fact that the local controllers have access to updated global information whenever
they optimize their inputs. Since no controller optimizes at the same time as the others the oscillations
as seen in Figure 5.1c and Figure 5.1d can be prevented.

These findings are supported by the simulation results in Figure 5.3. Although there is no centralized
MPC solution available4 to assess its relative optimality, the serial FC-DMPC method appears to be
capable of tracking the complicated reference supply very well.

The overall performance indices as defined in (5.1) are given in Table 5.1. In this table it can also
be observed that using the cosine reference the serial FC-DMPC actually performs as well as centralized
MPC optimal benchmark.

Table 5.1: Performance indices per method and per simulation

cosine reference sum of cos. reference

Hysteresis control 7211 17367
Centralized MPC 2770 -
Dual-decomposition DMPC 21851 34400
Parallel FC-DMPC 22260 23104
Serial FC-DMPC 2770 6761

4due to the large time required to compute such a solution

43



0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

time [min]

p
o
w

e
r 

[W
]

 

 
Demand
Supply

(a) Hysteresis control
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(b) Centralized MPC
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(c) Dual-decomposition DMPC
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(d) Parallel FC-DMPC
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(e) Serial FC-DMPC

Figure 5.1: Power demand of a population of N = 5 TCLs when subject to a cosine reference supply
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(a) Hysteresis Control
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(b) Centralized MPC
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(c) Dual-decomposition DMPC
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(d) Parallel FC-DMPC

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8

time [min]

te
m

p
e
ra

tu
re

 [
°
C

]

 

 
Individual
Average

(e) Serial FC-DMPC

Figure 5.2: Temperature dynamics of a population of N = 5 TCLs when subject to a cosine reference
supply 45
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(a) Hysteresis control
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intractable to solve on the machine used

(b) Centralized DMPC
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(c) Dual-decomposition DMPC

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

time [min]

p
o
w

e
r 

[W
]

 

 
Demand
Supply

(d) Parallel FC-DMPC
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(e) Serial FC-DMPC

Figure 5.3: Power demand of a population of N = 10 TCLs when subject to a reference that is a sum of
cosines 46
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(a) Hysteresis Control
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(b) Centralized MPC
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(c) Dual-decomposition DMPC
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(d) Parallel FC-DMPC
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(e) Serial FC-DMPC

Figure 5.4: Temperature dynamics of a population of N = 10 TCLs when subject to a reference that is
a sum of cosines 47
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Figure 5.5: Relative optimality of various DMPC solutions with respect to the centralized MPC solution
over multiple iterations

Table 5.2: Computation times to reach a solution per time step using the cosine reference with N = 5
appliances

average time [s] maximum time [s] standard deviation [s]

Hysteresis control 0.0007 0.0082 0.0007
Centralized MPC 0.9992 7.6239 1.1449
Dual-decomposition DMPC 0.1513 0.1433 0.0082
Parallel DMPC 0.0238 0.0490 0.0040
Serial DMPC 0.0298 0.0524 0.0062

The relatively poor performance of dual-decomposition DMPC and parallel FC-DMPC is due to the
non-convergence of the global objective function value over the iterations. In Figure 5.5 the relative
optimality of various DMPC solutions with respect to the centralized MPC solution is presented over
multiple iterations. The relative optimality of the DMPC solution J

dmpc

g

with respect to the centralized
MPC solution J

mpc

g

for multiple iterations i is computed using:

J

dmpc

g

(i)� J

mpc

g

J

mpc

g

· 100% (5.6)

The values have been averaged using data from all time steps. Whilst serial FC-DMPC converges to
this optimal solution within a maximum of 3 iterations, both dual-decomposition DMPC and parallel
FC-DMPC do not.

Computational speed

Here we compare the times in which the various methods reach a stopping criterion, i.e. convergence of
the global objective function or a maximum number of iterations. Since centralized MPC only obtained
a solution using a small population size of N = 5 appliances, only the results using that small population
reference will be used. The mean value, the maximum value, and standard deviation of the computation
times at each time step k are evaluated. The results are presented in Table 5.2 and Table 5.3.

It can be observed that the required computation time for all methods stays well below the sample
time of t

s

= 60 s that has been used in the simulations. The relatively quick computation times result
from the relatively small population size that is required to get the centralized MPC solution. However,
Table ?? shows that at N = 5 the centralized MPC approach already takes significantly more time to
reach a solution.
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Table 5.3: Computation times to reach a solution per time step using the sum of cosines reference with
N = 10 applainces

average time [s] maximum time [s] standard deviation [s]

Hysteresis control 0.0010 0.0037 0.0004
Centralized MPC - - -
Dual-decomposition DMPC 0.1921 0.5487 0.0303
Parallel DMPC 0.0224 0.0676 0.0042
Serial DMPC 0.0579 0.1149 0.0128
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Figure 5.6: Average time of computation as a function of the number of subsystems

The required computation time depends partly on the size of the MILP that is solved by each
controller. A larger amount of integer variables generally results in an MILP that takes longer to solve.
For any non-centralized method the amount of integer variables depends solely on the control horizon
N

c

. For centralized MPC however, this amount is multiplied by the amount of TCLs that are controlled.
For parallel DMPC methods all local MILPs are solved at the same time. The total required computa-

tion time is therefore a function of the amount of required iterations only. Since, as seen in Figure 5.5, the
value of the global objective function does not converge using these methods, they require the maximum
amount of iterations imax.

For the serial DMPC method the total required computation time also depends on the amount of
TCLs, since all local computations are done in sequence.

Since only the solutions of centralized MPC and serial FC-DMPC converge, it is interesting to evaluate
how their performance depends on the TCL population size. As mentioned earlier, for population sizes
larger thanN = 5 the centralized MPC optimization problem becomes intractable to solve on the machine
used. Figure 5.6a shows the sharp increase in the required computation time for smaller populations.
For populations larger than N = 3 the serial FC-DMPC method is faster than the centralized MPC
method. Moreover, the method is capable of handling much larger populations as the computation time
increases linearly, as seen in Figure 5.6b.

Communication

All of the DMPC methods that have been simulated are based on global information that is locally avail-
able. The di↵erent ways to achieve this have consequences for the required amount of communication.
The general results are shown in Table 5.4

The dual-decomposition method as proposed in [5] is based on a centralized pricing agent that deter-
mines the price of the interconnecting variables. Each local controller therefore needs to send its optimal
inputs and to retrieve the updates prices at every iteration.

Completely distributed parallel FC-DMPC with global communication requires 2·N ·(N�1) communi-
cation links to send and retrieve information to and from all other controllers. A centralized coordinating
blackboard agent can reduce this to a scheme similar as dual-decomposition DMPC.

As mentioned earlier in Chapter 4, in serial FC-DMPC each controller can pass on the updated
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Table 5.4: Communication requirements per time step k

connections [-]

Hysteresis control 0
Centralized MPC 2 ·N
Dual-decomposition DMPC 2 ·N · I
Parallel FC-DMPC 2 ·N · I
Serial FC-DMPC N · I

global information to the next controller in the updating sequence, requiring N connections within each
iteration.

Although the centralized MPC method does not require communication among the controllers to
coordinate their actions, all TCL temperatures need to be sent to the central controller and all control
inputs have to be sent back to the appliances, this still requires a total of 2 ·N communication links.

The type of information can be seen as a vector with a length N

p

in which each entry is the forecasted
local/global power demand per time step, represented by a float (generally 4 bytes). In the case that
local temperatures need to be communicated a single float is su�cient.

5.4 Case study with real data

In the previous section it has been shown that serial DMPC is the only investigated distributed MPC
method that is able to converge to globally optimal performance whilst handling larger population sizes.
In this section the serial FC-DMPC approach is applied to a practical case study using real data.

The aim of this case study is to smoothen the net available supply of the generated wind electricity
in Belgium by controlling the aggregate demand of a population of TCLs. The net available supply of
electricity is defined as the available wind energy minus the power demand of the TCLs. This is favorable
for two reasons:

1. The TCLs, which constitute a major part of the total energy demand, will make optimal use of
the available sustainable energy.

2. A smoother net available power supply from renewable generation will facilitate its integration in
the energy mix. Currently sharp increases or decreases in the sustainable energy supply require
fossil fueled power stations to adjust abruptly to compensate for these fluctuations, causing huge
expenses, ine�ciencies, and sometimes even blackouts. By smoothening the sustainable energy
supply, conventional fossil fueled power plants do not have to ramp up or down so abruptly,
improving overall e�ciency and reducing costs.

Data

The available dataset5 contains the measured electricity generation using wind energy in Belgium in time
intervals of 15 minutes. A higher resolution of 180 seconds is obtained by interpolating the available
data. For the closed-loop simulations a data set of 120 hours is used based on measurements between
the 5th and the 10th of October.

In 2013, Belgium had approximately 11 million inhabitants living in 4.5 million households. Assuming
that every household has 1 refrigerator and 1 freezer on average, and approximately every 10 people share
a refrigerator at work, this sums up to a total of around 10 million appliances. This means that they
have an average power demand of approximately:

N · p̄n = 10.000.000 · 20 W = 200 MW (5.7)

5GRID DATA, Elia System Operator NV, http://www.elia.be/nl/grid-data/productie/windproductie
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Formalizing the case structure

Initially, the net available generated wind energy is equal to the measured value minus the power demand
of the TCLs

p

net = p

wind � p

g

(5.8)

The measured wind energy is augmented by using a moving average with a span of 24 hours, yielding a
desired smooth signal. This is illustrated in Figure 5.7. The remaining deviation between the smoothened
signal and the original measured values is expressed as an error, (5.8) can then be rewritten into:

p

net = p

smoothed + p

error � p

g

(5.9)

The error should be matched with the aggregate demand of the TCLs. However, as seen in Chapter 3 a
reachable power supply should have a long term average equal to the average power demand. Therefore
the average power demand is added to the error signal to obtain a reachable power reference supply, this
principle is also illustrated in Figure 5.8:

p

ref = p

error + p̄

g

(5.10)

The objective of the controller is to match this reference power supply profile by controlling the global
demand p

g

. The resulting mismatch �p is:

�p = min
pg

(pref � p

g

) (5.11)

If the controller is able to match the reference power perfectly, combining (5.8), (5.10), and (5.11) results
in an alternative expression for the net available wind energy, in which the real energy has been smoothed
by the controlled power demand of the population of TCLs:

p

wind = p

smoothed � p̄

g

� �p (5.12)

5.4.1 Performance evaluation

The closed-loop simulation results are shown in Figure 5.9. Figure 5.9a shows that the aggregated
TCL demand is able to match the available reference power supply. Figure 5.9b shows that in some
cases the average temperature moves towards on of the temperature constraints. As previously seen in
Chapter 3 this will eventually limit the ability to match a certain power supply. Figure 5.9c shows the
error resulting from the serial FC-DMPC method and the benchmark hysteresis approach. The practical
implementation of the controller for demand response will always be a trade-o↵ between the following
factors:

1. The smoothness of the net power supply. Reducing the span of the moving average will ‘flatten’
the power reference for the population of TCLs, making it easier to match. The downside to this
approach is that a smaller smoothening span will result in a rougher net power supply and therefore
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Figure 5.7: Measured data and the desired smoothened net power supply
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Figure 5.8: Creating a reachable power reference by adding the average power demand to the error
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contribute less to the overall case objective of smoothing the sustainable power supply in the first
place.

2. Softening the temperature constraints to increase the ability to match a certain power supply. This
can be done by reformulating these hard constraints via a penalty function and adding them to
the objective function that is solved in the MILP. The downside to this approach is that it may
violate comfort preferences of the end users.

3. Changing the composition of the population of appliances. If the changes in the power reference
signal are relatively slow, appliances with a larger heat capacity might be able to provide better
results since a large heat capacity results in relatively slow temperature dynamics. Examples of
such appliances are room heating systems, air conditioning systems and electric water heaters.

5.5 Conclusions

In this chapter the FC-DMPC implementations that have been developed in the previous chapter have
been used for closed-loop simulations. The simulation results are compared to those using conventional
hysteresis control, centralized MPC, and dual-decomposition DMPC, a commonly used alternative from
the literature. Performance criteria are selected to the relative optimality with respect to the centralized
solution, the required computation time, and the communication requirements. Based on the findings in
this chapter the following conclusions are drawn:

1. The serial FC-DMPC implementation appears to be capable of converging to the centralized perfor-
mance within a small number of iterations. In the study, dual-decomposition methods as proposed
in [5] as well as parallel FC-DMPC do not converge. They result in an extremely variable power
demand and poor performance with respect to the centralized optimal solution.

2. With respect to the computation speed the standard hysteresis controller clearly outperforms all
other methods, but it lacks any form of coordination. The DMPC methods that do not converge
stop when they reach the stopping criterion of a maximum number of iterations. For a population
size larger than 3, serial DMPC outperforms centralized MPC due to the increasing amount of
integer input variables in the latter method. For population size larger than 5 the amount of
integer input variables in the centralized MPC optimization even results in a problem that is
intractable to solve on the machine used, while the required computation time of serial FC-DMPC
scales linearly with the size of the population.

3. With respect to the required communication the decentralized and centralized approaches outper-
form the DMPC methods. While in our case dual-decomposition DMPC and parallel FC-DMPC
require a centralized agent to obtain global information, serial FC-DMPC can reduce the commu-
nication requirements whilst maintaining the distributed nature.

4. Serial FC-DMPC has also been used in a case study based on real data. The objective of the case
study was to smoothen the available power supply of electricity from wind generation. Closed-loop
simulation have shown that a population of TCLs can e↵ectively be used to smoothen net power
supply of wind generation.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

To keep the conventional grid stable the electricity generation is continuously adjusted to match the
demand. Despite the advantages of renewable generation, weather factors like wind and sun cannot
be adjusted. To facilitate the integration of these renewable sources a paradigm shift is required: the
electricity demand should respond to the available supply. Thermostatically controlled loads (TCLs)
like refrigerators and electric water heaters are well suited for this, due to their thermal bu↵er ability.
The work in this thesis has aimed at the development of a distributed model predictive control (DMPC)
approach for a large-scale population of these loads. The objective of the controller is to control the
aggregate power demand of the appliances to match the available renewable power supply.

A hybrid model of a TCL was developed to synthesize a model predictive controller for a single ap-
pliance. Closed-loop simulations using this controller show that the binary input of the TCL severely
restricts the ability to track certain reference signals. Moreover, if the power supply profile is structurally
di↵erent than the power demand, the controller is unusable due to local temperature constraints. Three
power profile characteristics that the supply and demand should have in common have been identified:
the average power, the power variation, and the periodicity of the power profile.

By controlling multiple TCLs the relative error due to the binary inputs can be reduced. However,
the hybrid character of the prediction models may result in big jumps in the negotiations among con-
trollers possibly leading to non-converging oscillations in the optimization. To overcome this a serial
feasible-cooperation DMPC (FC-DMPC) approach has been proposed.

The serial FC-DMPC implementation has been compared with reference approaches as well as alternative
DMPC methods from the literature. Performance criteria were the relative optimality, the computational
burden, and the required amount of communication.

Results from closed-loop simulations show that unlike parallel DMPC methods, serial FC-DMPC of
the TCLs can converge towards the centralized MPC solution without making use of additional heuristic
stopping criteria that stop oscillations. The reason for this is that at every iteration each controller has
access to di↵erent global information.

The required computation time for serial FC-DMPC increases linearly with the amount of controlled
appliances. Although this is disadvantageous with respect to parallel implementations, it easily outper-
forms centralized MPC for larger population as the centralized optimization problem quickly becomes
intractable to solve.

Serial FC-DMPC also discards the need for global communication or a centralized coordinating agent
to obtain global information, since global up-to-date information can be passed around from one controller
to the other in sequence.
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6.2 Discussion and future research

The presented closed-loop simulations using the serial FC-DMPC implementation show favorable results
with respect to convergence, optimality, and the computational burden. In this section the limitations
of the approach will be discussed and promising directions for future research will be identified.

One of the findings in this work was that not all given power supply profiles can be matched by a
any set of appliances, e.g. the daily fluctuations in the solar energy supply cannot be matched by small
refrigerators that have to turn on approximately every hour to avoid a violation of the temperature
constraints. Basic requirements for a matchable supply and demand have been investigated but further
research towards a characterization of the demand response potential of certain TCL populations is rec-
ommended.

In this work relatively short prediction/control horizons have been used to enable fast simulation times
and fast computation times. Larger prediction horizons will allow TCLs to anticipate more on future
power surpluses and/or shortages. There are various possibilities to extend these horizons. One of them
is time-instant optimization MPC as proposed in [36], which converts the MILP in a continuous nonlinear
optimization problem that can be solved using multi-start pattern search algorithms. The aim of this
approach is to optimize for the real-valued time instants at which the input switches on/o↵ instead of
optimizing the binary input at each fixed time step up to the prediction horizon.

One of the assumptions that has been made in this thesis is that all systems are completely deter-
ministic and that their states are fully observable. However, there might be additional disturbances or
stochastic factors that influence the system dynamics, i.e. when a user opens a refrigerator to put a lot
of beer inside or when a user takes an exceptionally long shower. Including these stochastic processes in
the control approach, or taking a top-down stochastic control approach might enable new possibilities.

In the serial DMPC approach that has been used in this thesis all appliances update their schedules
in a fixed order. It would be interesting to investigate whether changing the order of updates influences
the performance. The scalability of a serial approach for extremely large populations (thousands to
millions) is also open to discussion since all appliances have to wait for their turn to update their inputs.
It would be interesting to see whether a hierarchical approach involving a combination of parallel and se-
rial updates is able to converge for large-scale populations whilst reducing the required computation time.

From a long-term perspective it would be interesting to do more fundamental work towards finding
DMPC methods for hybrid systems that can be guaranteed to converge to optimal performance and can
be generalized to work in a wider range of applications. Examples of such alternative applications can
be process installations with a large amount of valves with binary inputs, large networks of LEDs for
lighting purposes, a system of waterways with distributed locks/sluices, or tra�c networks with ramp
metering.
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