
Master thesis • Panagiotis Chatzichristodoulou • 2015

Master Thesis

Towards lifelong mapping in pointclouds
Panagiotis Chatzichristodoulou

Master Thesis DKE 09-16

Thesis submitted in partial fulfillment
of the requirements for the degree of Master of Science

of Artificial Intelligence at the Department of Knowledge
Engineering of the Maastricht University

Thesis Commitee:
University of Maastricht

Rico Mockel, Kurt Driessens
Distributed Organisms B.V. (DoBots)

Anne van Rossum

Maastricht University
Faculty of Humanities and Sciences

Department of Knowledge Engineering
Master Articial Intelligence

August 17, 2015

1

Master thesis • Panagiotis Chatzichristodoulou • 2015

The work in this thesis was supported by Almende B.V. Their cooperation is hereby gratefully
acknowledged.

Copyright © University of Maastricht, Department of Knowledge Engineering.
All rights reserved.

2

Master thesis • Panagiotis Chatzichristodoulou • 2015

Abstract

Long term mapping is the natural conceptual extension to existing mapping methods that are
focused on mapping static environments. Existing methods do not address problems such as
memory restrictions and changes that occur in map over time. Therefore, if tackled efficiently,
the solution of lifelong mapping will be one important step towards fully autonomous robots. As
discussed in the literature, lifelong mapping consists of two major subproblems. A compression
problem as the size of the map increases over time, and a dynamic environment problem as
the environment changes over time. This thesis investigates the application of non-parametric
Bayesian methods and how such tools can be used to tackle the compression subproblem of
lifelong mapping methods. A novel method of pointcloud representation is introduced and
its results are applied to an extended Kalman filter algorithm; both its compression strength
and expressive power are analyzed, as are directions in which the method could be improved
and extended to formulate a general solution to both the compression as well as the dynamic
environment problem of lifelong mapping.

3

Master thesis • Panagiotis Chatzichristodoulou • 2015

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Tools and methods . 8
1.3 Research questions . 9
1.4 Original contributions . 9

2 Literature review 10
2.1 Object based SLAM . 10
2.2 Point Cloud segmentation . 11
2.3 Non Parametric Bayesian methods . 11
2.4 Correspondence . 11

3 Theory background 13
3.1 Dirichlet Distribution . 13
3.2 Sampling methods . 14

3.2.1 Stick-breaking process . 14
3.2.2 Polya’s Urn . 15

3.3 Dirichlet Process . 16
3.4 Sampling methods . 17

3.4.1 Chinese restaurant process . 17
3.4.2 Stick-breaking . 18

3.5 Dirichlet process mixture models . 18
3.6 Inference . 20
3.7 Generalized Polya Urn . 20

4 Model definition 22
4.1 General pipeline . 22
4.2 The data distribution . 23
4.3 Sequential monte carlo sampler . 25

4.3.1 Gibbs updates . 25
4.3.2 Weight updates . 27

4.4 Decision Layer . 27
4.5 Complexity . 28
4.6 Landmark size . 29

5 Results 30
5.1 Simple datasets . 30
5.2 Expressivensess and decision layer . 33
5.3 EKF-SLAM experiments . 33
5.4 Speed . 35
5.5 Memory requirements . 36

4

Master thesis • Panagiotis Chatzichristodoulou • 2015

6 Discussion 38
6.1 Data distribution . 38
6.2 Downsampling and Filtering . 38
6.3 Unsupervised learning . 38
6.4 Clustering layer . 39
6.5 Decision layer . 40
6.6 Scalability . 41

7 Conclusion and future work 43

5

Master thesis • Panagiotis Chatzichristodoulou • 2015

List of Figures

1 Different behaviour the distribution for different initial parameters of the α vector . 14
2 Realizations from a Dirichlet distribution using the stick-breaking construction in

R3. Each color represents the weight of the respective component. Weights sum
up to 1 making every realization a probability mass function. A single line can be
mapped to a single dot in Figure 1 . 15

3 Polya’s urn for α= [2 1 1] . 16
4 A visualization of a Chinese Restaurant Process . 17
5 The stick-breaking process. Every part of the stick represents the number of

customers sitting at that specific table in the CRP process. It can be seen that the
higher values of α lead to realizations that are closer to the base distribution. It is
clear that realizations of a Dirichlet process are in fact discrete distributions. 19

6 A 1 dimensional Gaussian mixture model . 19
7 A Dirichlet process mixture model. 20
8 Generaly Polya Urn as can be described through the Chinese Restaurant process

paradigm. 21
9 General landmark update pipeline . 22
10 Point cloud modification pipeline. 23
11 The exponential trend in angle distances between points makes the Exponential

distribution a good modeling choice for the data. 23
12 Initial data along with the distributions inferred . 31
13 The results of running the pipeline using a dataset with a more complex color

distribution. 32
14 The color and position boundary is displayed in these pictures 34
15 SLAM session using the pipeline. The pipeline is used as the sensor model of

an EKF-SLAM module. The readings of a kinect mounted on a turtlebot are
downsampled and clustered. Current readings are either being matched to past
readings giving old landmarks or being used to create new landmarks if no similar
past environment sigantures exist. Landmarks are represented with yellow spheres. 35

16 Memory Requirements of the method as a function of strength parameter α. 37
17 Result of a session using RTAB-map module. The resulting map captures the

structure of the room and the maps for the room shown in the picture average 84MB
in size. 37

18 The behaviour of the dowsampling module with respect to the threshold of the
operations. 39

19 Unsupervised entity extraction. The number of clusters the method outputs can be
different from the number of elements existing in the environment. This is a direct
implication of using an unsupervised learning mechanism at the core of the pipeline. 40

20 Cases where using very low/high values on the hyperparameter α lead to a pipeline
that either groups the whole cloud being to a single landmark or to a pipeline that
constantly creates new landmarks. 41

6

Master thesis • Panagiotis Chatzichristodoulou • 2015

21 Memory requirements with respect to the number of landmarks in the environment.
10000 landmarks have memory needs of 2.6MB making the method very memory
efficient. 42

7

Master thesis • Panagiotis Chatzichristodoulou • 2015

1. Introduction

1.1. Motivation

Simultaneous Localization And Mapping (SLAM) is one of the fundamental challenges of au-
tonomous systems[1]. In order for robots to be considered truly autonomous they have to be
able to navigate through an unknown environment while mapping its structure. With solutions
like EKF-SLAM[2] and FastSlam[40] robots are currently capable of efficiently mapping unknown
environments. Methods that remove the restrictions of mapping static environments for a finite
amount of time are the logical extension to existing methods. Lifelong learning in robots is not a
new concept[5]; in recent years research with a specific focus on lifelong learning in mapping[6]
was introduced. Lifelong mapping introduces the concept of robots that are capable of continu-
ously mapping their environment with this leading to two basic extensions over existing methods:
Mapping methods that are capable of handling the memory needs of a constantly increasing
environment and robust enough to handle changes that occur in the environment over time.

The increasing need of memory resources brings in the spotlight one of the fundamental
restrictions of autonomous systems, i.e. memory bottlenecks. In order to be able to map an
unknown environment for an arbitrary amount of time, an arbitrary amount of memory is
required. Since memory resources can only be finite, the need for methods that store environment
information in a less costly manner rises. The problem then transposes to a compression problem
with two basic questions: How can environment information be compressed? How do we
minimize information loss due to the compression?

As a result, lifelong mapping consists of two basic subproblems: a compression problem as
the map increases over time and a dynamic environment problem as the environment changes
over time[7]. In this thesis the focus will be directed on the compression problem of lifelong
mapping. More specifically, how can Bayesian non-parametric methods be used to create com-
pressed environment representations that still retain enough environment information after the
compression takes place. Since different sensors require different mapping approaches the focus
will be directed towards algorithms that use RGBD sensors like Microsoft Kinect to perform the
mapping.

1.2. Tools and methods

Dirichlet processes and Dirichlet process mixture models [26] are the cornerstone of Bayesian
non-parametric statistics. The strength of those models lies in the fact that they allow their
components to grow as much as needed so as to best fit the data; in such models you must not
predefine the number of topics in a corpus of documents, the number of objects in a picture or
items in a point cloud. This implied information that resides in the data can be inferred by the
models themselves. The dynamic number of components in combination with different prior
choices leads to very flexible solutions that can be used in a very large area of applications from
topic modeling[43] to speaker diarization[45]. The main motivation of this thesis is to use such
methods as a means of creating compressed representations of the environment that also carry a
high amount of information the initial data did.

Since its introduction in 2010 Microsoft Kinect[25] has revolutionized RGBD devices with its
low price range and high quality sensors. It came as no surprise that research in pointclouds,

8

Master thesis • Panagiotis Chatzichristodoulou • 2015

the cloud representation system of Kinect, has increased since then. Many libraries that enable
the user to perform tasks from feature extraction to plane segmentation[12] in pointclouds
are currently available. In the field of robotics, many teams are using the Kinect sensors to
perform simultaneous localization and mapping[13],[56]. The goal of this thesis is to introduce
a compressed representation of pointclouds in order to tackle the first part of lifelong mapping
problems while using Bayesian methodologies.

1.3. Research questions

The following research questions will be addressed:
Are such representations rich enough to be used as sensor models in SLAM? A representation that

introduces a high amount of compression but keeps a very small portion of information the initial
cloud carried is not useful. The representation should be expressive enough and still provide a
useful environment abstraction after the compression takes place. That way the could such an
expressive representation be used in scenarios such as being the sensor model of SLAM methods?

Will the methods be fast enough to be used in online SLAM scenarios? The method’s speed is
directly affected by the preprocessing operations and feature extraction operations on the raw
cloud. If a high amount of information is removed from the cloud during the preprocessing, the
method will be fast but the information loss might lead to sub-optimal results. Can we find an
optimal filtering boundary that makes the method capable of handling online problems?

Will the compression ratio be significant with respect to normal representations? Since higher
compression ratio usually results in a higher amount of information loss, how will the information
loss be kept to a minimum while maintaining significant memory gains? The compression the
method introduces is very important since it directly affects the scalability the method will have.

1.4. Original contributions

To answer the research questions the following original contributions will be presented: By using
existing point cloud tools [12] a novel compressed environment representation is introduced. The
feature selection process is influenced by [17] and the clustering algorithm that is used to learn
the representation is an extension of the method introduced in [33]. Finally, an application of the
method is introduced by using it as a sensor model in an extended Kalman Filter module which
to the best of my knowledge has not been presented in the literature before.

The rest of the paper is structured as follows. In section 2 relevant literature review are
presented, section 3 introduces the theories behind the model, section 4 defines the model, section
5 shows experimental results of the method. Specific behaviours of the method are discussed in
Section 6 and, finally, a section 7 concludes with a short summary and future extensions by which
the method could be improved.

9

Master thesis • Panagiotis Chatzichristodoulou • 2015

2. Literature review

Literature review will be focused on 4 related sub fields: Object based SLAM methodologies,
pointcloud segmentation, non-parametric Bayesian methods and the correspondence problem in
SLAM.

Given that the basic motivation of the thesis is to create representations of objects within the
cloud, methods that use objects to perform SLAM are relevant. The second part of the literature
research is focused on pointcloud segmentation and the features that need to be extracted from a
cloud to minimize information loss. The third part of the research is focused on non-parametric
Bayesian methods and the clustering tools they provide. Finally, literature review is focused on the
correspondence problem in SLAM. As one of the fundamental problems that need to be solved in
order to have robust SLAM algorithms, it is imperative the correspondence problem be solved
efficiently.

2.1. Object based SLAM

Object based SLAM introduces a specific category of mapping problems where objects are used
as reference points while navigating through the environment. Salas-Moreno et al.[14] define a
method of performing object based SLAM for specific classes of objects. The objects are identified
by a camera that is on top of the robot. By having a model of pre-trained objects, SLAM can
be performed on environments where the robot knows what objects to expect. Castle et al. use
object recognition to perform object based SLAM with the use of a hand-held cameras. Selvatici
et al.[15] use a similar approach while exploiting structural information such as object height
and position within the room. That way a couch that is a large object situated in floor level is
easier to be recognized. Choudhary et al.[17] use pointclouds and an object database to match
objects currently seen with known objects within their database. They use Omnimaper[27] as their
mapping method, and as their representation a combination of the downsampled voxel grids
with additional normal and curvature information. Finally, all their operations are done in the
non-planar components of the pointcloud. Jensfelt et al.[15] present an object based approach
to SLAM where the robot can manipulate the objects of the map. They use camera pictures
as input and receptive Field Histogram as the method to abstract the camera input and extract
features for their object matching algorithm. Their approach is proposed as a solution to a service
robot scenario. MonoSLAM[19] introduces a method of performing SLAM using a monocular
camera. Seongyong Koo et al.[20] introduce a method of unsupervised object individuation from
RGB-D image sequences. They cluster their initial cloud into candidate objects using Eucledian
clustering and proceed to extract features like the Euclidian distance (L2) and the Kullback-Leibler
divergence between pointcloud objects. They use IMFT to solve their tracking problem.

The common base of such methods, with the exception of [20], is that they treat the problem
of object based SLAM as a classification task. More specifically, the robot can navigate in
environments where it knows what objects to expect. The approach presented in this paper
introduces a general and unsupervised method of using environment signatures as reference
points to perform SLAM.

10

Master thesis • Panagiotis Chatzichristodoulou • 2015

2.2. Point Cloud segmentation

Point cloud clustering tools enable the user to cluster clouds in objects, or segments of structure
that "make sense". The robustness of the clustering varies with respect to the method used the
features it requires as well as the application domain. Trevor et al.[29] take positional information,
Euclidean distances and the normal of points to as input to their function and output segments
that are part of the same object. PCL library[12] introduces methods like Euclidean clustering
and conditional Euclidean clustering that use a number of heuristics that take normal as well as
curvature information to extract segments in the pointcloud that represent objects. Furthermore,
there is a lot of research on segmentation of pointclouds in scenes, with the emphasis usually
put on extracting geometric primitives[30],[31] using cues like normals and curvature. Rabbani
et al.[23] introduce a new method of object segmentation using KNN as their base algorithm.
They also present a very informative literature review along with the strengths and weaknesses of
existing methods. Finally Triebel et al.[32] introduce a general clustering framework that does not
rely on plane segmentation. Instead of segmenting the plane by using classical approaches like
RANSAC or MLASAC they introduce a framework where they make no assumptions regarding
plane data.

In this thesis an alternative novel clustering approach will be introduced that will use Bayesian
non-parametric methods as its base.

2.3. Non Parametric Bayesian methods

Dirichlet processes and Dirichlet process mixture models are the cornerstone of Bayesian statistics.
In this thesis the focus is directed towards the clustering methods that are being introduced by
those tools. Radford M. Neal[38] with his paper regarding Markov Chain Monte Carlo (MCMC)
methods for Dirichlet process mixture models made the definitive step towards Dirichlet Process
Mixture Models (DPMM’s) receiving a lot of attention. Since then, a variety of approaches for
inference on such models has been introduced with MCMC methods, and Variational Inference
(VI) methods being two prominent such approaches. Variational inference for Dirichlet Process
Mixture Models (DPMM), introduced by Jordan et al.[39] introduces deterministic tools to perform
inference and approximate the posterior distribution and marginals of a dataset. Blei et al.[43]
introduced Latent Dirichlet Allocation (LDA) as a method to perform topic modelling. Teh et
al.[41] add a level hierarchy on the inference process by introducing the Hierarchical Dirichlet
process. Particle filter approaches have also been established. Doucet et al.[42] introduce Sequential
Monte Carlo (SMC) as a fast way to approximate inference. Dirichlet process mixture models are
a very active research field and covering it is beyond the scope of this thesis.

In this thesis SMC samplers where used due to their robustness as well as their inherent
extensiveness. A detailed description on the mechanisms of sequential samplers will be given in
the theory section.

2.4. Correspondence

In its general definition, the correspondence problem refers to the problem of ascertaining which
parts of one image correspond to which parts of another image, where differences are due to
movement of the camera, the elapse of time, and/or movement of objects in the photos. Under the

11

Master thesis • Panagiotis Chatzichristodoulou • 2015

object based SLAM context, correspondence refers to the problem of identifying objects as ones
that have been encountered before during the mapping process. In that direction, Cree et al.[34]
create a histogram of line segments of each landmark and compute their root mean square error.
They then proceed to calculate their RGB signature to calculate the distance between different
landmarks. Low et al.[35] match Scale Invariant Feature Transform (SIFT) features, an approach
which transforms image data into scale-invariant coordinates relative to local features. Lamon et
al.[36] store a database of fingerprints which indicate the location in the robot’s environment. The
features are ordered and stored at a database as they appear in the robot’s immediate surroundings.
A new fingerprint is computed for each new view and matched against existing ones. Finally, in
Seghal et al.[37] an extension of SIFT descriptors to 3D data and pointclouds is given.

In this thesis the correspondence problem is solved using a simple decision layer that compares
current environment signatures to past ones.

12

Master thesis • Panagiotis Chatzichristodoulou • 2015

3. Theory background

An introduction to the Dirichlet Distribution and Dirichlet process mixture models will be given.
Finally, the Generaly Polya urn model will be presented as it serves as the base to the sampler
presented in the model section.

3.1. Dirichlet Distribution

An example of a probability mass function (pmf) can be described through an ordinary six-sided
dice. To sample from this function, you cast the dice and get a number from 1 to 6. One important
property of probability mass functions taken from real dice is that they are not uniformly weighted
due to the manufacturing process not being perfect. A bag of dice can then be considered as an
example of a random function whose realizations are vectors of length six with components that
sum up to one. To sample from this random pmf, you have to put your hand in the bag and
draw a dice, and the result of this drawing process is itself a probability distribution. A Dirichlet
distribution is an object that can be used to model the randomness of such objects whose domain
is itself is a probability distribution i.e it is a distribution of distributions.

Formally, a probability density function with k components lies on the (k-1) dimensional
probability simplex, which is a surface in Rk denoted by ∆k and defined to be the set of vectors
whose k components are non-negative and sum up to 1, that is: ∆k = {q ∈ Rk|∑k

i=1 qi = 1, qi ≥
0 f or i = 1, 2, ...k} . ∆k is itself a (k− 1) dimensional object lying in the k dimensional space.

Dirichlet distribution: Let Q = [Q1, Q2, ..., Qk] be a random pmf, that is, Qi ≥ 0 for i = 1, 2, ..k
and ∑k

i=1 Qk = 1. In addition, suppose that α = [α1, α2, ..., αk], with αi ≥ 0 for each i, and
α0 = ∑k

i=1 αi. Then Q is said to have a Dirichlet distribution with parameter α, which we denote
by Q ∼ Dir(α) if it has a density of f (q; a) = 0 when q is not a valid probability mass function,
and otherwise:

f (q; α) =
Γ(α0)

∏k
i=1 Γ(αi)

k

∏
i=1

qai−1
i (1)

The first two cumulants of the distribution are the following:

E[αi] =
αi
α0

(2)

Cov(Qi, Qi) =

−αiαj

α2
0(α0+1)

if i 6= j
−αi(α0−αi)

α2
0(α0+1)

if i = j
(3)

Mean and variance formulas help understand how the changing the α vector affects the behaviour
of the distribution as to where the density is located as well as the variance in the pmfs sampled.
The following graphs display the difference of behaviour on samples from Dirichlet distributions
with different initial α values.

Random samples from a Dirichlet distribution are presented in Figure 1. It must be noted that
every point within the simplex can be considered itself a pmf since its components add up to one.
Furthermore, for an α = [c, c, c] , c ≥ 0 , the density is symmetric towards the center of the simplex;

13

Master thesis • Panagiotis Chatzichristodoulou • 2015

the special case of α = [1, 1, 1] with c=1 is displayed at Figure 1 (a) where the initial choice of the
α vector results is a uniform distribution of points over the probability simplex. As c increases
the distribution is concentrated towards the center of the simplex. The behaviour of the density
changes when the α vector is not symmetric, when there is a shift in density towards the higher
parameter, as is shown in Figure 1 (b) and Figure 1 (c). Finally, when the values of the vector are
smaller than 1, the density of the distribution is shifted towards the vertices of the simplex as is
shown in subplot Figure 1 (d).

(a) α = [1, 1, 1] (b) α = [1, 3, 1]

(c) α = [2, 5, 20] (d) α = [0.1, 0.1, 0.1]

Figure 1: Different behaviour the distribution for different initial parameters of the α vector

One important property of the Dirichlet distribution is that it serves as a conjugate prior to the
probability parameter q of the multinomial distribution.

That is, if X|q ∼ Multinomialk(n, q) and Q ∼ Dir(α) then Q|X = x ∼ Dir(α + x)

3.2. Sampling methods

Two basic sampling methods from the Dirichlet Distribution will be presented: Stick-breaking
process, and Polya’s urn.

3.2.1 Stick-breaking process

The stick-breaking process can be thought of as follows: Imagine breaking a unit length stick into
k such that the k pieces follow a Dir(α) distribution. Such samples can be created by the following

14

Master thesis • Panagiotis Chatzichristodoulou • 2015

procedure:
• Step 1: Simulate u1 ∼ Beta(a1, ∑k

i=1 ai), and set q1 = u1. That’s the first piece of the stick,
with the remaining piece having length of 1− u1

• Step 2: For 2 ≤ j ≤ k− 1, if j-1 pieces, with lengths u1, u2, ..., uj−1, .. have been broken off,

the length of the remaining stick is ∏
j−1
i−1(1− ui). We simulate uj ∼ Beta(aj, ∑k

i=j+1 ai) and

set qj = uj ∏
j−1
i=1(1− ui). The length of the remaining part of the stick is ∏

j
i=1(1− ui)

• Step 3: The length of the remaining piece is qk.
Since the last part of the stick will always be created so that we end up with a valid pmf, it is made
explicit how the density of the Dirichlet is a k− 1 dimensional object lying in the k dimensional
space. Figure 2 shows realizations of the stick-breaking process in R3 and the similarities between
the stick-breaking sampling method and the probability simplex presented in Figure 1 .

Figure 2: Realizations from a Dirichlet distribution using the stick-breaking construction in R3.
Each color represents the weight of the respective component. Weights sum up to 1 making every
realization a probability mass function. A single line can be mapped to a single dot in Figure 1

As expected, an initial α vector of [1,1,1] results in a uniform distribution of weights. Further-
more, as the weights in the α vector increase we have a more balanced distribution of weights
as shown in subfigure 2 ([10,10,10]) and this balance is shifted towards the higher weight when
the initial vector is not symmetric as shown in subfigure 2 ([2,5,15]). Finally, an initial vector of
weights < 1 results in single values dominating the simplex.

3.2.2 Polya’s Urn

The second method of sampling from a Dirichlet distribution is by using an urn model. In
probability theory and statistics, an urn problem is an idealized mental exercise in which some
objects of real interest are represented as colored balls in an urn or other container. More
specifically, Polya’s urn model depicts a random process whose realizations are realizations of a
Dirichlet distribution.

15

Master thesis • Panagiotis Chatzichristodoulou • 2015

Figure 3: Polya’s urn for α= [2 1 1]

Supose that you want to generate Q ∼ Dir(α).To start, we put αi balls of color i for i = 1, 2, ..., k
in an urn, as shown in Figure 3. It must be noted that α can be fractional and even irrational (!). At
each iteration we randomly draw a ball from the urn and put it back in the urn with an extra ball
of the same color as well. As we iterate this procedure an infinite amount of times, the proportions
of the balls of each color will converge to a pmf that is a realization from the distribution Dir(α).

The procedure can be then described as follows:
• Step 1: Set a counter n=1. Draw X ∼ α/α0.
• Step 2: Update counter to n+1. Draw Xn+1|X1, X2, ..., Xn ∼ α/αn0, where αn = α + ∑n

i=1 δXi
and αn0 is the sum of the entries of αn. Repeat step 2 an infinite number of times.

3.3. Dirichlet Process

The Dirichlet process was formally introduced by Thomas Ferguson in 1973 and serves as an
extension to the Dirichlet distribution in modelling infinite sets of events. More specifically, in
the introductory example, a six sided dice was described. If instead of a six sided dice, one with
an infinite amount of sides was used, the Dirichlet Distribution could not handle the infinity of
the sample space. A Dirichlet process is a random process whose realizations are distributions
over an arbitrary and possibly infinite sample space. To make the infinity assumption manageable,
the Dirichlet process restricts the class of distributions it can handle to a specific set: Discrete
distributions over the infinite sample space that can be written as an infinite sum of indicator
functions which can be formally presented as:

P(B) =
∞

∑
k=1

pkδyk (4)

Where pk is the mixture weight and δyκ is an indicator function such that δyκ (B) = 1 i f yκ ∈ B
and δyκ (B) = 0 otherwise. This formulation makes explicit the fact that realizations of a Dirichlet
process are discrete distributions.

Formaly, the DP is defined as follows: Let X be a set and let B be an σ-algebra on X . Let (X ,
B) denote the collection of probability distributions on set as P . P is a Dirichlet Process as with a
strength parameter α and a base distribution H on (X , B) if for any finite measurable partition
{Bi}k

i=1 of X , the random vector ((P(B1), ..., P(Bk)) has a Dirichlet distribution with parameters (
(αH(B1), ..., αH(Bk)) . The mean and the covariance of a Dirichlet process are defined as:

• E [G(A)] = αH(A). The base distribution can be though of as the mean of the Dirichlet
process

16

Master thesis • Panagiotis Chatzichristodoulou • 2015

• V [G(A)] = H(A)(1−H(A))
α+1 . The strength parameter α can be though of as the inverse covari-

ance of the Dirichlet process.

3.4. Sampling methods

Two methods for sampling from a Dirichlet process will be presented: the Chinese Restaurant
Process and the Stick-breaking process.

3.4.1 Chinese restaurant process

Polya’s Urn and the stick-breaking process are two names of the same process. The chinese
restaurant process paradigm is similar to the Polya’s urn and it is defined as follows: Imagine
a restaurant with an infinite number of tables, each with infinite capacity. At time t=1, the first
customer enters the restaurant and sits at table 1 with probability 1. For every next step, the new
customer entering the restaurant can either:

• Choose an unoccupied table with probability ∝ α
n−1+α

• Choose occupied table k with probability ∝ c
n−1+α where c is the number of people currently

sitting at that table
If you let an infinite number of customers enter the restaurant, the proportions of people sitting

on each table will be a realization from a Dirichlet process with strength parameter α.
It can be seen that there is a positive reinforcement effect in this process; that being that the

more people sitting at a table, the higher the chance that more people will be sitting into that
table in the future. It can also be proved that the number of tables grows ∝ αlog(n) where n is the
number of customers in the restaurant. Figure 4 visualizes the progression of the proccess as more
people enter the restaurant.

Figure 4: A visualization of a Chinese Restaurant Process

One important property of this procedure is that the nth customer has the same probability to
sit on the same table as any other customer of the table. That meaning that the number of people

17

Master thesis • Panagiotis Chatzichristodoulou • 2015

sitting on table 1 is on average the same as the number of people seating on table k! This is a very
interesting and counter intuitive (at first) property of the exchangeable data and understanding it
is crucial on building intuition regarding the behaviour of exchangeable random variables.

3.4.2 Stick-breaking

Measures drawn from a Dirichlet distribution are discrete with probability 1. This property
is made explicit by the stick-breaking process. The construction is based on the independent
sequences of i.i.d. random variables (π′k)

∞
k=1 and (φk)

∞
k=1 defined as follows:

π′k|α0, G0 ∼ Beta(1, α0) φk|α0, G0 ∼ G0 (5)

This can be defined as follows: Draw π′k as a Beta random variable. Draw φk from G0 Now
define a random measure G as:

πk|π′k ∼
k−1

∏
l=1

(1− π′l) G =
∞

∑
k=1

πkδφk (6)

The first part of the stick will have length π′k and the conditional length given all the previous
draws is given by πk. Finally, the distribution created is given as an infinite sum of indicator
functions given by G. Figure 5 displays a Dirichlet Process’s realization from a stick-breaking
process with a Gaussian base distribution. Different parameter values for strength parameter α
directly affect the distributions output. As the α parameter is increased, the realization of the
distribution will be closer to the base distribution. Furthermore, this picture also shows that the
distribution created from the infinite sum of indicator function is a discrete distribution. Finally,
when G is generated using a stick-breaking process with a strength parameter α, it can be written
in shorthand as: G ∼ GEM(α)

3.5. Dirichlet process mixture models

One of the most important properties of those objects is that they can serve as a non-parametric
prior to mixture models. A typical 1D mixture model that represents data coming from a mixture
of two one-dimensional Gaussian distributions is shown in Figure 6.

Mixture models can be considered as the Bayesian approach to clustering, and one of the most
important applications of the Dirichlet process is to serve as the non-parametric prior on the
parameters of such models. In particular, suppose that observations xi arise from the following
model:

θi|G ∼ G, xi|θi ∼ F(θi) (7)

Where F(θi) denotes the distribution of the observation xi given θi. The factors θi are condi-
tionally independent given G, and the observation xi is conditionally independent of the other
observations given the factor θi. When G is distributed according to a Dirichlet process, this model
is refered as a Dirichlet process mixture model and its representation is shown in Figure 7. The
number of distributions that underlie the data can be mapped to the number of tables within a
chinese restaurant process, and the mixing proportions are proportional to the number of people
sitting in every table.

18

Master thesis • Panagiotis Chatzichristodoulou • 2015

Figure 5: The stick-breaking process. Every part of the stick represents the number of customers
sitting at that specific table in the CRP process. It can be seen that the higher values of α lead
to realizations that are closer to the base distribution. It is clear that realizations of a Dirichlet
process are in fact discrete distributions.

Figure 6: A 1 dimensional Gaussian mixture model

Since G can be represented using a stick-breaking process, the factors θi take on values φk with
probability πk. We can denote this using zi as an indicator variable which takes on positive values
and is distributed according to π. Hence, an equivalent representation of a Dirichlet process
mixture model is given by the following conditional distributions:

π | α0 ∼ GEM(α0) zi | π ∼ π

φk|G0 ∼ G0 xi|zi, (φ)∞
k=1 ∼ F(φzi)

(8)
The infinite limit of finite mixture models is taken when we let the number of components into

a model to reach infinity. An infinite mixture model assumes that the data come from an infinite

19

Master thesis • Panagiotis Chatzichristodoulou • 2015

number of distributions.
This means that in such models the number of components from which the data are generated

can be infinite. In such models it is important to notice in a dataset of size n , the data come from
at most n components. This is an important property of infinite mixture models and is exploited
when performing posterior inference.

3.6. Inference

Figure 7: A Dirichlet process
mixture model.

Statistical inference is the process of deducing properties of an
underlying distribution by analysis of data. Inference can be con-
sidered as the inverse procedure presented in the plate in Figure
7; the same graphical process with the arrows facing the opposite
direction. Statistical inference techniques can be categorized into
3 families: MCMC, Variational inference and SMC methods. The
literature on such methods is extensive and covering it is beyond
the scope of this thesis; for the purpose of this thesis an SMC
sampler will be defined in detail in the model definition section.

3.7. Generalized Polya Urn

Dirichlet process priors have been widely used in the literature
as non-parametric Bayesian tools to estimate the number of clus-
ters in the data[46]. Dependent Dirichlet Processes (DDP) extend
those tools by allowing the clusters in the data to vary with some
variance over time by introducing dependencies on the data. The
DDPs are a natural extension of the Dirichlet processes in domains
where data cannot be considered exchangeable.

A DDP is also known as Generalized Polya Urn[47]. The
most important property of this model is that it randomly deletes
partitions of clusters on every iteration.

This Generalized Polya Urn distribution also has the shorthand notation GPU (α, ρ) and can be
described as follows: At time point t given the clusters at t− 1 and the data Nt−1 perform the
following: for every cluster and every point within that cluster the point will stay in the cluster
or be deleted from it; the probability of a point being deleted from the cluster is proportional to
either the size of the cluster or a constant value ρ < 1[47]. After the deletion takes place, each
point at time t is being assigned to a new cluster ct,n with probability proportional to the size of
the cluster at time t− 1 or assigned to a new cluster with probability proportional to strength
parameter α of the prior Dirichlet Process. Cluster sizes are then updated accordingly.

The GPU can be described using the Chinese restaurant process paradigm as follows: At
time t, customers are seating at several tables in the restaurant. Each customer decides if he/she
will remain at table with probability p or definitely leave the table with probability 1− p. Each
customer makes his/her decision and leaves or remains seated. Each table occupied is moved
according to the number of customers still occupying the table or is deleted if is currently empty.
A new customer then enters the restaurant and either chooses to sit on one of the existing tables

20

Master thesis • Panagiotis Chatzichristodoulou • 2015

with probability proportional to the number of customers sitting at that specific table or choose
table a new with probability to the strength parameter α of the prior Dirichlet process.

Figure 8: Generaly Polya Urn as can be described through
the Chinese Restaurant process paradigm.

Algorithm 1 describes the following
process: At time step t given cluster
assignments at time t− 1 and data Nt−1
perform the following: for every cluster
and every point within that cluster the
point will either stay in the cluster or
be deleted from it; the probability of
a point being deleted from the cluster
is proportional to either the size of the
cluster or a constant value ρ < 1[47].
Cluster sizes are then modified with
respect to the number of points that
were deleted from each cluster. After
the deletion takes place, each point at
time t is being assigned to a new cluster
ct,n with probability proportional to the
size of the cluster at time t− 1 after the
deletion step or be assigned to a new
cluster with probability proportional
to strength parameter α of the prior
dependent Dirichlet process. Cluster
sizes are then updated accordingly.

Algorithm 1 GPU
1: procedure GPU(t)
2: for k = 1, ...Kt−1,Nt−1 do
3: Draw ∆sk

t−1 ∼ Binom(sk
t−1,Nt−1

, ρ) . Number of elements to delete

4: Set sk
t,0 = sk

t−1,Nt−1
− ∆sk

t−1
5: end for
6: for n = 1, ...Nt do

7: Draw ct,n ∼ Cat(
s1

t,n−1
α+∑k sk

t,n−1
,

s
Kt,n−1
t,n−1

α+∑k sk
t,n−1

, α
α+∑k sk

t,n−1
)

8: If ct,n ≤ Kt,n−1 set : sct ,n
t,n = sct ,n

t,n−1 + 1, Kt,n = Kt,n−1

9: If ct,n > Kt,n−1 set : sct ,n
t,n = 1, Kt,n = Kt,n−1 + 1

10: end for
11: end procedure

21

Master thesis • Panagiotis Chatzichristodoulou • 2015

4. Model definition

The model definition section is structured as follows: An introduction to the general pipeline that
will serve as the compressed sensor model of the EKF SLAM module is presented first. Every
non-trivial component of the pipeline is then analysed in detail with respect to the operations it
serves.

4.1. General pipeline

(a) General pipeline (b) Landmark pipeline

Figure 9: General landmark update pipeline

The general flow of op-
erations that defines the
basic communication be-
tween the pipeline and the
EKF module is presented
in Figure 9. During step
1 the EKF-SLAM module
requests new observation
readings given the current
cloud readings and the po-
sition of the robot. The
pipeline takes those cloud
readings, extracts clusters

and returns the landmarks currently being observed while taking into account landmarks that
were observed in the past. Landmarks and clusters are identical concepts representing a different
layer in the pipeline. More specifically, clusters are output from the sampler and are given as an
input of landmarks to the EKF module. Figure 9 shows a more detailed view of the computations
of the pipeline. The algorithmic procedure is shown in Algorithm 2 analytically.

Algorithm 2 Landmark Layer
1: procedure getLandmarkIds(pC, Landmarks)
2: pCD ← downsample(pC)
3: pCDF ← extractFeatures(pCD)
4: cls← cluster(pCDF)
5: for cls as cl do
6: (sim, landId)← calcBestSim(cl, Landmarks)
7: if sim > threshold then
8: addLandmarks(landId)
9: else

10: addLandmarks(newID)
11: end if
12: end for
13: return landMarkIds . Return landmarks
14: end procedure

22

Master thesis • Panagiotis Chatzichristodoulou • 2015

Method input: The method takes as input a pointcloud (pC) as it is currently being read by
the kinect sensor.

Lines 3-4: The downsampling and feature extraction are done through the pcl[12] library. A
voxel grid is used to reduce the dataset size. A leaf size of approximately 3cm produces a good
trade-off between precision and speed. The object representation approach used is similar to[17].
Instead of using the CSHOT descriptor, fast point feature histogram (fpfh)[22] histogram is used
instead. A fpfh represents an angular signature between a point and its neighbors. After the fpfh
estimation an angular signature of information between a point and its neighbors is acquired.
The color signature of the cloud is being encoded with an approach similar to[33]. The color
spectrum is discretized and what is extracted is the count of different color signatures between a
point and its k nearest neighbors. Finally the position of every point is also given as input to the
algorithm. The filtering pipeline is presented in figure Figure 10. The pipeline outputs a vector of
x = (xs, xc, xa) where s represents a vector of space information, c a vector of color information
and a angular information.

Figure 10: Point cloud modification pipeline.

Lines 4: The input of the method is the feature vector for every data point which is calculated
in the previous steps. The clustering method is presented in section 4.3.

Lines 6-12: The correspondence of previously seen landmarks to current observations is
computed here. Since the landmarks are distributions, statistical distances can be taken to
perform the matching. For every observation, its distances with all the stored landmarks are
calculated. calcBestSim returns the cluster with the highest similarity that exists in the database.
If the similarity is high enough, correspondence is performed and the landmark is added to the
landmark list to be sent for update in the EKF; otherwise a new landmark is added to the list.

Lines 13: The algorithm returns the list of the landmarks the robot currently encounters.

4.2. The data distribution

Figure 11: The exponential trend
in angle distances between points
makes the Exponential distribu-
tion a good modeling choice for
the data.

Each point x in the cloud is represented as a tuple x =
(xs, xa, xc) where superscript s represents spatial information,
a angle information, and c color information. The method
those features are extracted is explained in lines 3 and 4 of
the general pipeline.

The object model is a mixture of distributions over the data
with each object being modeled as F (θk

t) where θ represents
the parameters of object k at time t. More specifically, each

23

Master thesis • Panagiotis Chatzichristodoulou • 2015

set X with n datapoints at time t is distributed as:

Xt,n ∼ F(θk
t) = Normal(xs

t,n|µt, Σt)Mult(xc
t,n|δt)Exp(xa

t,n|λt)
(9)

Where Normal is a three dimensional normal distribution with mean µ and covariance Σ
representing the positional distribution of the data; Mult is a categorical multinomial distribution
with parameter vector δ representing the color distribution and Exp is an exponential with rate
λ representing the angle distribution of the data within the cluster. This signature introduces
a novel environment abstraction and the purpose of choosing such signature was to have both
simple but also informative environment signatures captured by the model. The exponential
distribution was specifically chosen to model angular information after empiric evaluation showed
that it would provide a good fit for the angle signature distribution of the data. A typical angle
signature distribution is shown in Figure 11 and the exponential trend of data distances is trivial
to distinguish.

Now that the object distribution is defined, the progression of the sufficient statistics at time t
given t− 1 is given by:

θk
t |θk

t−1 ∼
{

T(θk
t−1) if k ≤ Kt−1

G0 if k > Kt−1.
(10)

Where T represents the transition kernel of the data given the previous state in the model. The case
k > Kt−1 represents the creation of a new cluster and G0 is the base distribution of the Dependent
Dirichlet process. In our case, the conjugate priors of the distributions of the data were chosen to
model the base distribution. Therefore, G0 is defined as:

G0(θ
k
t) = NiW(µk

t , Σk
t |κ0, µ0, ν0, Λ0)Dir(δk

t |q0)Gam(λk
t |α0, β0) (11)

Where NiW is a Normal inverse Wishart distribution, Dir denotes a Dirichlet distribution,
and Gam the Gamma distribution. κ0, µ0, ν0, Λ0, q0, α0 and β0 are parameters of the model. The
generative process for the Dependent Dirichlet mixture model can be written for each timestep t
as:

1. Draw ct ∼ GPU(α, ρ)

2. ∀ k draw: θk
t |θk

t−1 ∼
{

T(θk
t−1) if k ≤ Kt−1

G0 if k > Kt−1.

3. ∀ point n draw xt,n ∼ F(θct ,n
t)

The transition kernel must satisfy[47]:∫
G0(θk)T(θk

t |θk
t−1)dθk

t−1 = G0(θk) (12)

24

Master thesis • Panagiotis Chatzichristodoulou • 2015

The equation means that the invariant distribution must equal its base distribution. A typical
way of meeting this restriction and forcing the sampler to converge to the original target density[49]
is to introduce a set of M auxiliary variables z such that:

P(θk
t |θk

t−1) =
∫

P(θk
t |zk

t)P(zk
t |θk

t−1)dzk
t (13)

The transition kernel of the model can now be sampled by using the following formula:
θk

t ∼ T(θk
t−1) = T2(zk

t) ◦ T1(θ
k
t−1) where:

zk
t,1:M ∼ T1(θ

k
t−1)

= Normal(µt−1, Σt−1)Mult(δt−1)Exp(λt−1)
(14)

µt, Σt, δt, λt ∼ T2(zk
t,1:M)

= NiW(κM, µM, νM, ΛM)Dir(qM)Gam(αM, βM)
(15)

where µt, Σt, δt, λt are posterior parameters given the auxiliary variables z.

4.3. Sequential monte carlo sampler

Sequential Monte Carlo (SMC) samplers for Dirichlet process mixture models where introduced
by Doucet et al. [50] and serve as fast alternative to Markov Chain Monte Carlo and Variational
Inference methods of performing posterior inference. SMC samplers have known strengths and
weaknesses and are a good fit for the problem at hand as their main theoretical disadvantage,
the particle degradation, is hard to occur at the minimal time horizon that the sampler is being
used. We can now define the SMC sampler that will be used to perform inference on our model
as follows:

The process presented in Algorithm 3 can be described as: For every time step T for every
particle L and for every sample S, sample cluster indexes c(l)t from the proposal distribution Q1
and sufficient statistics from proposal distribution Q2 as they are defined in section 4.3.1. After
cluster assignments and sufficient statistics are sampled for all the samples and particles, perform
the deletion step of the DDP and sample auxiliary variables from the transition kernel of the
elements that stayed in the clusters after the deletion steps. Compute the weights and perform the
resampling.

4.3.1 Gibbs updates

The proposal distribution Q1 is the probability of an assignment ct,n given cluster sizes, parameters
and concentration α. Formally Q1 can be written as:

Q1(ct,n|sk
t,n, θk

t , α) ∝ Cat(s1
t,n, ...sK

t,n, α)×
{

F(xt,n|θct
t) if k ≤ Kt−1∫

P(xt,n|θt)G0(θ)dθ if k > Kt−1.
(16)

25

Master thesis • Panagiotis Chatzichristodoulou • 2015

Algorithm 3 SMC for DDPM
1: Input: Points {x1,1:Nt , ..., xT,1:Nt }
2: Output: Clusters that best fit input data
3: for t = 1, ...T do
4: for l = 1, ...L do
5: for i = 1, ...S do
6: Sample (ct)(l) ∼ Q1
7: Sample (θk) ∼ Q2
8: end for
9: for k = 1, ...K do

10: Sample ∆sk
t−1 ∼ Binom((sk

t−1,Nt−1
)(l), ρ)

11: Set sk
t,0 = sk

t−1,Nt−1
− ∆sk

t−1

12: Sample ((zk
t+1)

(l)) ∼ T1((θ
k
t))

(l)

13: end for
14: compute particle weights wl

t
15: end for
16: Normalize weights and resample
17: end for

Where ct,n represents cluster c of point n at time t, s represents cluster sizes. The integral represents
the posterior predictive distribution of the cluster times the base distribution with the parameters
integrated out. More specifically, the analytic expression of the integral is:

∫
P(xt,n|θt)G0(θ)dθ =

∫
Normal(xs

t,n|µt, Σt)Mult(xc
t,n|δt)Exp(xa

t,n|λt)×

NiW(µt, Σt|κ0, µ0, ν0, Λ0)Dir(δt|q0)Gam(λt|α0, β0)dθ

=
∫

Normal(xs
t,n|µt, Σt)× NiW(µt, Σt|κ0, µ0, ν0, Λ0)

Mult(xc
t,n|δt)× Dir(δt|q0)

Exp(xa
t,n|λt)× Gam(λt|α0, β0)dθ

= tν0−1(xs
t,n|µ0,

Λ0(κ0 + 1)
κ0(ν0 − 1)

)×
V

∏
j=1

Γ(xc
t,n)

Γ(q0)
×

Γ(∑V
j=1 q0)

Γ(∑V
j=1 xc

t,n)
× Lomax(α0 + sc

t,n, β0

V

∑
j=1

xc
t,n)

(17)

Where t represents student’s t-distribution with ν degrees of freedom, Lomax represents
Lomax distribution with shape and scale, α and β respectively and the rest represent a Dirichlet-
Multinomial (aka DirMul) distribution. The formulas of the posterior predictive distributions can
be found in the literature with [48] being a good example.

The integration is easy to calculate due to two basic assumptions on the data. Firstly, the object
distribution and the base distribution are build in such a way that their respective counterparts

26

Master thesis • Panagiotis Chatzichristodoulou • 2015

consist of conjugate distributions. Secondly, due to that every pair of prior distribution along with
its respective likelihood being independent from every other pair given the parameters θ, it is easy
to calculate the integral in closed form.

The conjugacy of the base and prior distribution also allow for an easy sampling formula for
proposal distribution Q2 which is of the form:

Q2(θ
k
t |θk

t−1, xk
t , zk

t) ∝ F(xk
t |θk)× T2(θ

k
t |zk

t)

= NiW(µk
t , Σk

t |κn, µn, νn, Λn)Dir(δk
t |qn)Gam(λk

t |αn, βn)
(18)

With:

κn = κ0 + N, νn = ν0 + N, µn =
κ0

κ0 + N
µ0 +

N
κ0 + N

xs

Λn = Λ0 + ss
x, qN = q0 + ∑

n
xc

i , αn = α0 + N, βn = β0 + ∑
n

xa
i

(19)

Where x defines the sample mean for the elements assigned at cluster c, sx the sample variance
and N denotes the number of observations[52].

4.3.2 Weight updates

Finally, the weight update step is defined as follows: On every time step t the weight of particle l
is calculated as:

w(l)
t =

P(c(l)t , θ
(l)
t , xt|θt−1)

P(c(l)t , θ
(l)
t |θt−1)

(20)

Using Bayes rule, the numerator can be written as:

P(xt, |c(l)t , θ
(l)
t θt−1)× P(c(l)t , θ

(l)
t |θt−1) (21)

Which can be calculated using equations Q2 and Q1 for the first and second part respectively.
After the particle weights are normalized particles are drawn with probability proportional to
their weights.

4.4. Decision Layer

Once the points of the current iteration are grouped, the clusters that were inferred are passed
as input to the decision layer. The decision layer calculates the similarity of the current clusters
to past ones; if the similarity is high enough the clusters are considered to be part of the same
landmark. To do that, distance measures between stored clusters and the ones that are inferred
during the current iteration of the algorithm must be defined. Distances between distributions are
called divergences and extensive literature on them exists??.

Every cluster consists of a three part distribution as it was defined in section 4.2. To define
a distance measure between clusters, individual distances between their individual distribution

27

Master thesis • Panagiotis Chatzichristodoulou • 2015

parts will be considered. More specifically let l be the distribution of a cluster encountered in
the past and o the distribution of a currently observed cluster. l and o can be decomposed into
3 parts: lG,lC,lE where G,C and E stand for Gaussian, Categorical and Exponential respectively.
With that notation and for each individual landmark distribution l and observation distribution o
the distances computed were the following: A Wesserstein (lG, oG), a Kullback-Leibler (lG, oG), a
SquaredHellinger (lE, oE),a Kullback-Leibler (lE, oE) and Kullback-Leibler (lC, oC).

With that in mind the distance between every distribution can be transposed to a vector where
each element represents a specific distance between the two distributions. That way, deciding
if a cluster is part of a landmark that has been encountered before is now a problem of finding
the optimal decision boundary given the distances at hand. For the purposes of this thesis, the
decision boundary of an observation being a landmark or not was chosen by empiric evaluation
of the landmarks. It is of course possible to learn the optimal decision boundary but due to time
restrictions a simpler decision making approach was chosen instead.

4.5. Complexity

The complexity can be decomposed into three parts. The cloud downsampling, the clustering and
the decision making process.

O(total) = O(f ilter) + O(cluster) + O(decision)

Downsampling: The complexity of the cloud downsampling pipeline can be further decomposed
to the one of its components. This means that the decomposed complexity is defined as follows:

O(f ilter) = O(Downsampling + Stat Removal + RANSAC + FPFH + Color est)

Voxel downsampling searches for neighbors within a distance defined by the user and keeps
an average value that equally represents the cloud. Since the operation involves searching for
neighbors of a point, and since search operations take O(log n) time where N is the number of
points within the cloud, the complexity of voxelGrid downsampling is O(klogn) where k is the
number of neighbors and n the number of points in the cloud. Statistial outlier removal searches
for k nearest neigbhors and removes those whose deviation is passed a certain threshold. Given
that search operations take O(log n), for k neighbors, the complexity is O(k log n). The same
assumption regarding the averaging computations is done here. A high amount of research has
been done regarding the optimal complexity of RANSAC [51]. RANSAC has a complexity of
O(k + ms ∗ N) where k is the maximum amount of iterations defined by the user, ms the average
number of models per sample N the number of data points. FPFH operations have a complexity
of O(nk) as given in [22]. Finally, for the operation of color estimation, the k nearest neighbors
are chosen and some constant operation is performed on them. The complexity here is similar to
Statistical outlier removal since operations after the search are assumed to take take O(1) time.
The complexity for color estimation then becomes O(k log n) where k is the number of neighbors,
n the number of points.

The downsampling pipeline has a total complexity of:

O(f ilter) = O(k0 log ninit + k1 log n1 + k2 + ms ∗ n2 + n3k3 + k4 log n3) (22)

28

Master thesis • Panagiotis Chatzichristodoulou • 2015

The different k indexes represent the number of neighbors defined for every operation. The n
represents the number of points used as input. Using the notation of equation 22, ninit defines the
whole cloud, n1 the cloud after operation 1, n2 the cloud after operations 2 and so on.

Clustering: The complexity of the SMC sampler is defined in [33] as O(TLKSN) where T
defines the time frames, L the number of particles, K the number of clusters, S the number of
samples, and N the size of the dataset.

O(cluster) = O(TKLSN)

Decision making: The decision making takes O(κ ∗ l2) computational time where κ defines
the number of clusters output by the sampler and l the number of landmarks currently stored in
the database. This number can be further reduced by taking for example only landmarks that are
nearby the cluster, but optimizing the decision making performance is outside the scope of this
thesis.

Finally, with some notation abuse, the final complexity of the method can then be defined as:

O(f ilter) + O(cluster) + O(decision) =

O(k0logn0 + k1logn1 + O(k2(tM) + ms ∗ n2) + n3k3 + k4logn3) + O(LKSn3) + O(κ ∗ l2) =

O(k0logn0 + k1logn1 + k2(tM) + ms ∗ n2 + n3k3 + k4logn3 + LKSn3 + κ ∗ l2)

(23)

The complexity as defined in equation 23 depends on the initial reduction of the voxel
downsampling. As the voxel leaf size parameter decreases and the downsampling outputs a larger
cloud, the precision as well as the computing time of the method increases. Since in this thesis the
research was directed towards online SLAM methods, the leaf size was modified so that the cloud
the time requirements for online landmark tracking were met.

4.6. Landmark size

The basic block of this algorithm is a cluster containing an environment signature. In order to
be able to compute how scalable the method is, the size a single cluster requires to be stored
will be calculated. Each cluster is represented by the parameters of the distributions it contains;
these values are passed in a single row in a database[53]. According to the database manual the
maximum number of memory a single landmark can require is 260 bytes. Calculations in the
results section are done using 260 bytes as a unit cost of the method.

29

Master thesis • Panagiotis Chatzichristodoulou • 2015

5. Results

The results of the method will be presented and analysed in this section. A simple dataset will
first be presented to introduce the reader to the environment signature the sampler outputs. The
decision layer subsection introduces the behaviour of the decision boundary of the sampler with
respect to the color and position of the clusters inferred. The pipeline is then used as a sensor
model in the EKF-SLAM experiments section and the results of the mapping are presented and
analysed. Finally, to address the research questions that were formulated in the introduction the
method was tested for its speed and memory requirements.

5.1. Simple datasets

In this section the algorithm will be tested against a simple dataset. That will make easier the
conceptual extension to more complex clouds that will be used when mapping the environment. In
order to test the sampling as well as the decision layer of the algorithm, a simple dataset provided
by the pcl[12] library was used. More specifically, a cloud consisting of two milk cartridges (Figure
12 (a)) with different colors and poses was used.

The cloud was parsed from a cloud file (.pcd) and was given as input to the downsampling and
feature extraction pipeline. The reduced cloud (top left Figure 12 (b)) was then passed as input to
the sampler and the clustering results are shown in Figure 12 (b). The downsampling reduces a
cloud of 27408 points in 4493 producing a significantly smaller cloud; this cloud along with all
feature information calculated are given as input to the sampler. The sampler outputs a mixture
of distributions that fits the input data. The clustering output is shown in Figure 12 (b) with the
top right being the Gaussian distributions inferred, bottom left the exponential and bottom right
the categorical representing the color information of the cloud. The sampler outputs 3 clusters for
the data and it can be seen that the change in angular information of the box leads the sampler to
assign two distributions in the left milk box cloud. The color information is captured correctly in
the structures which was expected since the data had distinct color signatures.

LandmarkId 1
LandmarkId GausKL GausWes ExpKL ExpSqHell CatKL

2 0.0115821 53.5171 1.20726 0.319589 0
3 13.5579 22449.9 1.56956 0.376699 13.8155

LandmakId 2
1 0.0115821 20.1454 1.7215 0.319589 0
3 12.8379 21458.6 0.474719 0.449769 13.8155

LandmarkId 3
1 13.5579 31191.5 2.55205 0.376699 13.8155
2 12.8379 65013.8 0.53855 0.449769 13.8155

Table 1: Distances between the distributions inferred in Figure 12

After the structure is clustered, distances between the elements can be calculated. Table 5.1

30

Master thesis • Panagiotis Chatzichristodoulou • 2015

(a) Initial cloud. This cloud is given as input to the downsampling pipeline.

(b) Downsampling and clustering results. Top left picture shows the cloud that is given as input
to the sampler. Top right (Gaussian) and bottom (Exponential, Categorical) subfigures show the

distributions inferred from the data. The different clusters signatures are color coded.
Blue and red signatures override completely since they carry identical color signatures.

Figure 12: Initial data along with the distributions inferred
31

Master thesis • Panagiotis Chatzichristodoulou • 2015

(a) Initial cloud. This cloud is given as input to the downsampling pipeline.
Notice the more complicated colors the milk catridges have.

(b) Downsampling and clustering results. Top left picture shows the cloud that is given as input
to the sampler. Top right (Gaussian) and bottom (Exponential, Categorical) subfigures show the

distributions inferred from the data. The colors in the distribution signatures display
the different clusters inferred.

Figure 13: The results of running the pipeline using a dataset with a more complex color
distribution.
32

Master thesis • Panagiotis Chatzichristodoulou • 2015

shows the distances between every cluster shown in Figure 12. It can be seen that the first two
landmarks have small distances in their Gaussian counterparts since they represent nearby areas
and objects in the cloud that are not very far apart. The angular distances are represented by
the ExpKL and ExpSqHell rows. The distinct colors of the milk boxes are correctly captured in
their respective cluster signatures. The calculated distances are then given to the decision layer to
calculate if the clusters currently calculated are part of landmarks previously encountered. An
example with more complex color signatures is shown in Figure 13. The clouds are now given a
mixture of colors and this is passed to the color signature inferred on every cluster in Figure 13.
In this case the sampler outputs 2 clusters and the more complex color signatures are captured
correctly.

5.2. Expressivensess and decision layer

Are such representations rich enough to be used as reference points when performing SLAM?
To test the expressive strength of the representation, experiments were performed to investigate
how the representation in combination with the decision layer differentiated over different objects
in the cloud. The decision boundary of the pipeline can be decomposed into three basic parts; a
positional, a color and an angular boundary. Figure 14 shows the behavior of the decision layer
with respect to the Gaussian (positional) and Categorical (color) parts.

In the first picture of Figure 14 the yellow folder along with some of its environment to the
left are being assigned to landmark with id 7386 (color coded black). The folder is then removed
and a blue trashcan is put in its place. The folder and the trashcan are similar in size; due to
that their Gaussian counterparts will not have large distances. Their main difference lies in the
color signature they carry. Since the distance in their color is substantial, a new landmark with id
7412 (color coded purple) is created to capture the change in the signature of the environment at
that place of the map. The different landmark assigned to the cluster can be seen on the second
picture in Figure 14. The positional decision boundary is displayed in the third and fourth picture
of Figure 14. In the initial position the yellow folder is assigned to the green landmark of the
cloud. As the object is moved to a different position in the cloud, it is being assigned to a different
cluster. The reason the cluster is assigned to multiple landmarks is due to the fact that the folder
is decomposed to several clusters and each one of them is being assigned to a different part of the
cloud with respect to their position. This can be seen in the fourth picture of Figure 14 where the
bottom left of the folder is being assigned to the red cluster.

Finally, the exponential part of the distribution is responsible for the angle signature elements
within a cluster carry. Having a very strict limit in the angle distribution can lead to very small
clusters and subsequently to a high amount of landmarks within the data.

5.3. EKF-SLAM experiments

The pipeline was used in real life scenarios as a sensor model in a landmark based EKF SLAM
algorithm and was further tested for its speed and memory requirements. Figure 15 shows an end
result of a SLAM session using the pipeline as a sensor model. The yellow spheres represent the
landmarks extracted during the SLAM session with every sphere representing the environment
signature at the specific part of the map; cloud readings were taken from a kinect sensor mounted

33

Master thesis • Panagiotis Chatzichristodoulou • 2015

(a) Yellow Folder assignment (b) Blue trashcan assignment

(c) Folder initial (d) Folder moved

Figure 14: The color and position boundary is displayed in these pictures

34

Master thesis • Panagiotis Chatzichristodoulou • 2015

Figure 15: SLAM session using the pipeline. The pipeline is used as the sensor model of an
EKF-SLAM module. The readings of a kinect mounted on a turtlebot are downsampled and
clustered. Current readings are either being matched to past readings giving old landmarks or
being used to create new landmarks if no similar past environment sigantures exist. Landmarks
are represented with yellow spheres.

on the robot.
As the environment is being reduced from a pointcloud to a set of landmarks, the memory

requirements shift from pointcloud to landmark based representations. Since every landmark
represents a signature of the environment at this particular point, the compression is done by
reducing a high amount of points to that specific signature. The number of parameters needed to
define the three distributions in the signature is all the information this method requires and hence
the memory gains are substantial. The memory requirements as a function of hyperparameter α
are analyzed in section 5.5.

5.4. Speed

Are the methods fast enough to be used in online SLAM problems? As was shown in the
complexity session, the speed is dependent on the initial downsampling of the pipeline. If the
initial downsampling performed on the cloud is intense, there will be significant information
loss but the speed of the method will increase. Conversely if the downsampling is not intense
the speed of the method will decrease making the pipeline unable to handle online data streams.
The speed of the method was tested on a mid level as well as on a high level machine to display
the differences in time needed to perform the operations. The benchmark results of a machine
running on a pentium i5-3210M and on a pentium i7-3610QM are shown in table 2.

The leaf size directly affects the time the cloud takes to be processed in the pipeline. As
shown in table 2, a leaf size between 1-5cm provides a good balance between speed and precision.
“Matching” benchmarks the time it takes for the method to match new landmarks to existing

35

Master thesis • Panagiotis Chatzichristodoulou • 2015

Pentium i5-3210M
Leaf Size Downs Time Cloud size Sampling Matching

1m 0.908768 9 0.0290296 0.00218081
50cm 0.914169 32 0.0112929 0.00243211
30cm 1.07862 79 0.0138666 0.00126673
10cm 1.1764 654 0.0712596 0.00154977
5cm 1.75907 2391 0.215594 0.00181846
1cm 14.3283 25556 5.06356 0.854803

Pentium i7-3610QM
Leaf Size Downs Time Cloud size Sampling Matching

1m 0.675993 7 - -
50cm 0.779975 30 - -
30cm 0.676315 66 - -
10cm 0.746999 488 - -
5cm 0.878036 1827 0.132831 0.00281951
1cm 1.11554 18487 2.69855 0.0021291

Table 2: Benchmark of the pipeline using different downsampling settings on two different
machines. The effect the downsampling has on the speed of the process is noticeable.

ones. It must be noted that adding new landmarks can be a time consuming operation. In fact
matching everything to existing landmarks takes a very small amount of time and can be therefore
disregarded.

5.5. Memory requirements

“Is the compression created by the methods significant?” The memory requirements are shown in
Figure 16 as a function of strength parameter α. The compression that the method introduces is
significant since even for a very high value of α, the memory needs of the landmarks are smaller
than 30KB. Mapping the same environment using the RTAB mapping method, results in maps as
the one shown in Figure 17 that average 84MB of memory which leads to a significant compression
ratio of 1/2800.

The memory requirements of the method are a function that is directly affected to the hyperpa-
rameter α of the sampler. As α increases, the sampler will output more clusters on every iteration.
Higher value choices of α will result in a higher amount of landmarks and, consequently, in larger
memory requirements.

As can be seen, the number of landmarks follows the logarithmic trend of the distribution in
relation to α. Increasing the α value more will not make the algorithm follow the logarithmic trend
indefinitely. That is due to the fact that as the α increases, the constant decision layer has an upper
bound to the number of landmarks it can support. This means that the algorithm will keep adding
landmarks until the environment saturates and no new landmark can be added. It must also be
noted that as the α parameter is set to higher values, the sampler outputs more clusters making

36

Master thesis • Panagiotis Chatzichristodoulou • 2015

Figure 16: Memory Requirements of the method as a function of strength parameter α.

Figure 17: Result of a session using RTAB-map module. The resulting map captures the structure
of the room and the maps for the room shown in the picture average 84MB in size.

it a more accurate environment descriptor. On the other hand, having a high hyperparameter α
increases the computation time of the sampler, making it non-feasible to use in real time mapping
scenarios. Values of α between 1 and 10 provide a robust but also fast enough sampler that can be
used in online mapping scenarios.

37

Master thesis • Panagiotis Chatzichristodoulou • 2015

6. Discussion

The discussion section investigates modelling choices like the data distribution, details regarding
specific parts of the pipeline, as well as implications that are part of the theoretical background
the pipeline is built on. Finally some limits of the pipeline in relation to its parameter values are
investigated.

6.1. Data distribution

One of the fundamental properties of the model is the data distribution it infers. The data
distribution that was introduced and analyzed in 4.2 is an extension to the distribution proposed in
[11] for 2D video data. The object distribution was chosen to be simple but also expressive enough
to be able to handle the information the environment contains efficiently. If the problem definition
was formulated differently, alternative features could be used and, consequently, a different
environment distribution could have been implemented instead. More complex environment
distributions can lead to objects that capture the information the environment contains with a
higher amount of precision. The memory requirements for every extra component will then
increase with respect to the number of parameters the conjugate distribution of the component
requires.

6.2. Downsampling and Filtering

The downsampling and filtering operations are important as they affect the speed of sampling and
the quality of clusters inferred on every iteration. During those operations the cloud is transformed
from raw kinect readings to the data the sampler expects. Downsampling is used to reduce the
size of the cloud and increase the speed of the method since the complexity of the pipeline is
directly related to cloud size as it was shown in section 4.5. Filtering operations calculate the
features for every point of the downsampled cloud. Having the downsampling operations run on
a low threshold will lead to a large cloud after the downsampling takes place. Passing a large
cloud in the sampler will result in a more precise environment representation, but also a slower
clustering process. On the other hand, having downsampling operations run with a very high
threshold will lead to a very small cloud that has a very small amount of information of the inital
cloud. This will lead to clustering results that do not contain significant information regarding the
initial cloud.

Figure 18 displays the results of having the pipeline run with a high (a) and a low (b) threshold
on the milk cartridge dataset that was introduced in Figure 12 (a). The first figure displays a cloud
that has a small amount of points removed during the downsampling operations. The sampler
will then receive a cloud with a lot of the initial information still contained in its structure. The
second figure displays a cloud that has kept a very small portion of the information the initial
cloud carried.

6.3. Unsupervised learning

It is important to note the implications of having a pipeline that is based on a Dependent Dirichlet
Process i.e. an unsupervised learning algorithm. Due to the unsupervised nature of the method,

38

Master thesis • Panagiotis Chatzichristodoulou • 2015

(a) Small threshold in the downsampling (b) A high threshold in the downsampling
leads to a high amoung of points leads to a small amount of poits

propagated to the sampler propagated to the sampler

Figure 18: The behaviour of the dowsampling module with respect to the threshold of the
operations.

the elements of the cloud will be clustered as the algorithm sees (statistically)fit. This means that
there will be clusters in the cloud that will be small in size and will contain just parts of an object
and, conversely, clusters that are large and contain more than a single object. The environment is
therefore clustered in chunks that need not be semantically sound. One such example is shown in
Figure 19 where multiple milk cartridges are either clustered as single entities or part of larger
clusters.

This is an expected behaviour given the unsupervised nature of the method and it does not
hinder the results of the pipeline. In projects where the focus is directed towards individuating
parts of the environment with higher degree of precision, more complex object signatures can be
used to force the sampler in only grouping parts of the environment that share a high amount
of homogeneity among their features. If classification of objects is necessary a decision layer
could be added on top of the clustering and objects could be classified on the distribution level.
Unsupervised approaches make the method general and able to handle a high amount of different
environments.

6.4. Clustering layer

An important property regarding the behaviour of the pipeline exists with respect to the Dirichlet
hyperparameter α. During the clustering, choosing a correct value for the hyperparameter α is
important. When the sampler is run with a very low α, the whole cloud will be assigned to a
small amount of clusters, or, in the extreme case, a single cluster. Having every point in the cloud
assigned to the same cluster leads to a significant amount of information loss as no region specific
information is passed on the cluster’s output. Figure [20] shows the behaviour of the sampler for
α values lower than 1. The clusters are color coded in the downsampled cloud, and it can be seen
that only one cluster is output by the sampler.

On the other hand, having a very large α can lead to a very large amount of clusters being
output by the sampler on every iteration of the method. That can lead to a non-converging pipeline
since every time a new landmark that does not fit the landmark database is infered. This leads to

39

Master thesis • Panagiotis Chatzichristodoulou • 2015

(a) Initial data (b) Clusters inferred

Figure 19: Unsupervised entity extraction. The number of clusters the method outputs can be
different from the number of elements existing in the environment. This is a direct implication of
using an unsupervised learning mechanism at the core of the pipeline.

many small clusters with each one containing a small number of points. Furthermore, setting a
high α value leads to a slower sampling process since the complexity of the sampler is O(TKLSN)
where K is defined as the number of clusters. Figure [11] displays the behavior of the sampler for
very large values α. The landmarks extracted from a single cloud are shown as spheres; it can
be seen that the cloud is not visible and the majority of the points are considered as standalone
landmarks.

Both such behaviours are expected and can be explained from the theory on Dirichlet
processes[9]. Generally, in every application the value choice of hyperparameter α will affect the
precision of the sampler. If the task at hand requires a high amount of precision, the sampler can
be run with a high hyperparameter α. That way every point will become a cluster minimizing
information loss with respect to the cloud. Having a low α forces the sampler to group a high
amount of points in the dataset together. That leads to a high amount of information loss and
is not useful in most scenarios. If the domain in which the sampler is run requires fast decision
making, the sampler could be run with a smaller value of α. That way it would ouput a smaller
amount of clusters and would consequently be faster. Since the information loss is larger compared
to high-alpha runs, tweaking the value of α is a task usually left on the user and is related to what
the corresponding problem at hand is. Given that one basic motivation of this thesis was a method
that could be used in online SLAM problems, small initial values of α in the range of 1-10 were
used. That way the sampler was fast while the information loss was manageable.

6.5. Decision layer

The decision layer subsection will investigate the limits of the method that are introduced by the
post-clustering operations of the pipeline. The restrictions introduced by the decision layer are
relatively straightforward. Taking very small distances in the distance threshold operation can

40

Master thesis • Panagiotis Chatzichristodoulou • 2015

(a) Low α translates to a single cluster (b) High α translates to a non-converging cloud

Figure 20: Cases where using very low/high values on the hyperparameter α lead to a pipeline
that either groups the whole cloud being to a single landmark or to a pipeline that constantly
creates new landmarks.

lead to a pipeline that continuously adds new landmarks to the database.
Such restrictions can be introduced to every part of the distances between distributions

calculated in section 5.1. Taking a strict limit regarding the Gaussian counterparts will lead to
a decision layer that only matches neighbor clusters. In the same way, taking a strict limit with
respect to the categorical counterparts will lead to a decision making process that only matches
elements with similar color signatures. Finally, taking a strict exponential limit will lead to a
decision layer that only accepts clusters with very similar angle signatures. The exponential part
is the most susceptible to noise and Figure 6.5 illustrates this specific behavior.

It can be seen that limiting the landmark matching operation to very small exponential distances
between clusters, can lead to a cloud where a single object can be decomposed to many entities.
Spheres represent landmarks and it can be seen that the chair is being assigned to many landmarks
using the pipeline with this setup. That means that very strict limits lead to a non-converging
pipeline with respect to the landmarks it outputs. The same also holds for the rest of the distances
with the Gaussian and categorical parts being less susceptible to noise.

Furthermore, since the number of landmarks is also a function of noise, areas of the cloud
that are near the maximum range of the sensor can lead to different landmarks added frequently.
These issues can be tackled by having a less strict limit in the decision making process.

6.6. Scalability

The representation introduced is scalable with respect to its memory needs and the landmark
matching operations as the number of landmarks in the environment increases. The small amount
of memory a single landmark singature requires (260Bytes) makes the method capable of handling
a large amount of landmarks. Figure 21 displays the memory requirements in relation to the
number of landmarks in the environment. It can be seen that even for a very large amount of

41

Master thesis • Panagiotis Chatzichristodoulou • 2015

(a) Very strict decision limits lead to multiple
entities on a single

landmarks (>1000) the memory requirements are low (<10MB).
Furthermore, when a high amount of landmarks is introduced in the system, there exists a

number of techniques that can be used to reduced the time required for the landmark matching
operations. For example, since landmarks are stored in a database, only landmarks occupying
a specific part of the map can be retrieved; that way the landmark matching operations will be
constant with respect to the number of landmarks the decision layer allows in a specific part of
the map.

Figure 21: Memory requirements with respect to the number of landmarks in the environment.
10000 landmarks have memory needs of 2.6MB making the method very memory efficient.

42

Master thesis • Panagiotis Chatzichristodoulou • 2015

7. Conclusion and future work

In this thesis a novel cloud representation by using Bayesian methodologies was introduced. An
application of the representation was introduced through a pipeline that uses this methodology as
a sensor model in landmark based slam.

Representation signatures were first presented on simple datasets and were analyzed towards
their results. The decision layer section displayed the expressive capabilities of the signature and
how it distinguishes between different parts of the environment. In order to show the extend of
the expressiveness of the method, the pipeline was then used as the sensor model of a landmark
based EKF-SLAM algorithm. The pipeline was then tested towards its speed on two different
machines. Finally, the memory needs of mapping using this method were investigated and it was
shown that the number of landmarks follows the logarithmic trend of the underlying Dirichlet
distribution until the environment saturates on landmarks.

The discussion section investigated the implications of using a pipeline that is build on top
of an unsupervised learning method. The motivation behind using such data signatures was
analyzed and how more demanding problems can lead to more complex environment signatures
that better represent environment signatures. Furthermore the importance of hyperparameter α
was analyzed as well as how should the α value be chosen with respect to the problem at hand.
Having a correct α value is important since it can lead the pipeline to produce sub-optimal results.
With respect to the downsampling process, the discussion section analyzed how the tweaking of
the downsampling parameters helps the user choose between speed and precision in the pipeline.
Finally, the scalability of the pipeline was presented along with examples of how the landmark
matching operations could handle an increasing number of landmarks in an environment.

There are a number of directions in which the pipeline can be improved. Choosing more
complex environment signatures could increase the expressional strength of the sampler making
it more robust and capable of representing with higher precision more complex structures.
Furthermore, since the sampler clusters parts of environment, it would be interesting to see
how a hierarchical approach would affect the result of the clustering. Hierarchical dependent
Dirichlet processes would be interesting extensions since such tools would both have the ability to
capture structures in a hierarchical way as well as be able to handle the dynamic component that
lifelong mapping problems introduce. Furthermore, having a more complex decision layer would
also increase the robustness of the method making it able to handle more complex environment
structures. Finally, all those additions could help tackle lifelong mapping problem as a whole in a
fully Bayesian manner.

43

Master thesis • Panagiotis Chatzichristodoulou • 2015

References

[1] Thrun, S. (2002). Probabilistic robotics. Communications of the ACM, 45 (3), 52-57.

[2] Bailey, T., Nieto, J., Guivant, J., Stevens, M., & Nebot, E. (2006, October). Consistency of
the EKF-SLAM algorithm. In Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on (pp. 3562-3568). IEEE.

[3] Thrun, S., & Montemerlo, M. (2006). The graph SLAM algorithm with applications to large-
scale mapping of urban structures. The International Journal of Robotics Research, 25 (5-6),
403-429.

[4] Figueredo, A.J. and Wolf, P. S.A. (2009). Assortative pairing and life history strategy - a
cross-cultural study. Human Nature, 20:317–330.

[5] Thrun, S., & Mitchell, T. M. (1995). Lifelong robot learning. The Biology and Technology of
Intelligent Autonomous Agents, 165-196.

[6] Konolige, K., & Bowman, J. (2009, October). Towards lifelong visual maps. In Intelligent Robots
and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on (pp. 1156-1163). IEEE.

[7] Walcott, A. (2011). Long-term robot mapping in dynamic environments (Doctoral dissertation,
Massachusetts Institute of Technology).

[8] Hjort, N. L., Holmes, C., MÃijller, P., & Walker, S. G. (Eds.). (2010). Bayesian nonparametrics
(Vol. 28). Cambridge University Press.

[9] MacEachern, S. N. (2000) Dependent dirichlet processes. Unpublished manuscript, Department
of Statistics, The Ohio State University.

[10] Barber, D. (2012) Bayesian reasoning and machine learning.

[11] Neiswanger, W., Wood, F., & Xing, E.The dependent dirichlet process mixture of objects for
detection-free tracking and object modeling. In Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics (pp. 660-668) (2014, August)

[12] Rusu, R. B., & Cousins, S. (2011, May). 3d is here: Point cloud library (pcl). In Robotics and
Automation (ICRA), 2011 IEEE International Conference on (pp. 1-4). IEEE.

[13] LabbÃl’, M., & Michaud, F. (2011, September). Memory management for real-time appearance-
based loop closure detection. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ Inter-
national Conference on (pp. 1271-1276). IEEE.

[14] Salas-Moreno, R. F., Newcombe, R. A., Strasdat, H., Kelly, P. H., & Davison, A. J. (2013, June).
Slam++: Simultaneous localisation and mapping at the level of objects. In Computer Vision
and Pattern Recognition (CVPR), 2013 IEEE Conference on (pp. 1352-1359). IEEE.

[15] Selvatici, A. H., & Costa, A. H. (2008). Object-based visual SLAM: How object identity
informs geometry.

44

Master thesis • Panagiotis Chatzichristodoulou • 2015

[16] Castle, R. O., Gawley, D. J., Klein, G., & Murray, D. W. (2007, April). Towards simultaneous
recognition, localization and mapping for hand-held and wearable cameras. In Robotics and
Automation, 2007 IEEE International Conference on (pp. 4102-4107). IEEE.

[17] Choudhary, S., Trevor, A. J., Christensen, H. I., & Dellaert, F. (2014, September). SLAM with
object discovery, modeling and mapping. In Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on (pp. 1018-1025). IEEE.

[18] Jensfelt, P., Ekvall, S., Kragic, D., & Aarno, D. (2006, September). Augmenting SLAM with
object detection in a service robot framework. In Robot and Human Interactive Communication,
2006. ROMAN 2006. The 15th IEEE International Symposium on (pp. 741-746). IEEE.

[19] Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007). MonoSLAM: Real-time
single camera SLAM. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29 (6),
1052-1067.

[20] Koo, S., Lee, D., & Kwon, D. S. (2014, September). Unsupervised object individuation from
RGB-D image sequences. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on (pp. 4450-4457). IEEE.

[21] Cichocki, A., & Amari, S. I.Families of alpha-beta-and gamma-divergences: Flexible and
robust measures of similarities. Entropy, 12 (6), 1532-1568.

[22] Fast point feature histogram.Rusu, R. B., Blodow, N., & Beetz, M. (2009, May). Fast point
feature histograms (FPFH) for 3D registration. In Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on (pp. 3212-3217). IEEE.

[23] Rabbani, T., van den Heuvel, F., & Vosselmann, G. (2006). Segmentation of pointclouds using
smoothness constraint. International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, 36 (5), 248-253.

[24] Caron, F., Davy, M., & Doucet, A. (2012) Generalized Polya urn for time-varying Dirichlet
process mixtures. arXiv preprint arXiv:1206.5254.

[25] Zhang, Z. (2012) Microsoft kinect sensor and its effect. MultiMedia, IEEE, 19 (2), 4-10.

[26] Wainwright, M. J., & Jordan, M. I. (2008). Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1 (1-2), 1-305. “

[27] A.Trevor, J.Rogers, and H.Christensen. Omnimapper: A modular multimodal mapping
framework. In IEEE International Conference on Robotics and Automation (ICRA), 2014

[28] Koo, S., Lee, D., & Kwon, D. S. (2013, November). Multiple object tracking using an rgb-d
camera by hierarchical spatiotemporal data association. In Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on (pp. 1113-1118). IEEE.

[29] Trevor, A. J., Gedikli, S., Rusu, R. B., & Christensen, H. I. (2013). Efficient organized pointcloud
segmentation with connected components. Semantic Perception Mapping and Exploration
(SPME).

45

Master thesis • Panagiotis Chatzichristodoulou • 2015

[30] Unnikrishnan, R., & Hebert, M. (2003, October). Robust extraction of multiple structures
from non-uniformly sampled data. In Intelligent Robots and Systems, 2003. (IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference on (Vol. 2, pp. 1322-1329). IEEE.

[31] Rabbani, T., van den Heuvel, F., & Vosselmann, G. (2006). Segmentation of pointclouds using
smoothness constraint. International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, 36 (5), 248-253.

[32] Triebel, R., Shin, J., & Siegwart, R. (2010, June). Segmentation and unsupervised part-based
discovery of repetitive objects. In Robotics: Science and Systems (Vol. 2).

[33] Neiswanger, W., Wood, F., & Xing, E. (2014, August). The dependent dirichlet process mixture
of objects for detection-free tracking and object modeling. In Proceedings of the Seventeenth
International Conference on Artificial Intelligence and Statistics (pp. 660-668).

[34] Cree, M. J., Jefferies, M. E., & Baker, J. T. Using 3D Visual Landmarks to Solve the Correspon-
dence Problem in Simultaneous Localisation and Mapping.

[35] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60 (2), 91-110.

[36] Lamon, P., Tapus, A., Glauser, E., Tomatis, N., & Siegwart, R. (2003, October). Environmental
modeling with fingerprint sequences for topological global localization. In Intelligent Robots
and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on (Vol.
4, pp. 3781-3786). IEEE.

[37] Sehgal, A., Cernea, D., & Makaveeva, M. (2010). Real-time scale invariant 3D range pointcloud
registration. In Image Analysis and Recognition (pp. 220-229). Springer Berlin Heidelberg.

[38] Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models.
Journal of computational and graphical statistics, 9 (2), 249-265.

[39] Blei, D. M., & Jordan, M. I. (2006). Variational inference for Dirichlet process mixtures.
Bayesian analysis, 1 (1), 121-143.

[40] Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2002). FastSLAM: A factored solution
to the simultaneous localization and mapping problem. AAAI/IAAI, 593-598.

[41] Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M. (2006). Hierarchical dirichlet processes.
Journal of the american statistical association, 101 (476).

[42] Doucet, A., De Freitas, N., & Gordon, N. (2001). An introduction to sequential Monte Carlo
methods (pp. 3-14). Springer New York.

[43] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of machine
Learning research, 3, 993-1022.

[44] MacEachern, S. N. (2000). -

46

Master thesis • Panagiotis Chatzichristodoulou • 2015

[45] Fox, E. B., Sudderth, E. B., Jordan, M. I., & Willsky, A. S. (2011). A sticky HDP-HMM with
application to speaker diarization. The Annals of Applied Statistics, 5 (2A), 1020-1056.

[46] Charles E Antoniak,Mixtures of dirichlet processes with applications to bayesian nonpara-
metric problems, The annals of statistics (1974), 1152âĂŞ1174

[47] F. Caron, M. Davy, and A. Doucet, Generalized Polya urn for time-varying Dirichlet process
mixtures, 23rd Conference on Uncertainty in Artificial Intelligence (UAIâĂŹ2007), Vancouver,
Canada, July 2007, 2007

[48] Fink, D. (1997). A compendium of conjugate priors.

[49] ÃIJlker, Y., GÃijnsel, B., & Cemgil, A. T. (2010). Sequential Monte Carlo samplers for Dirichlet
process mixtures. In International Conference on Artificial Intelligence and Statistics (pp.
876-883).

[50] Del Moral, P., Doucet, A., & Jasra, A. (2006). Sequential monte carlo samplers. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 68 (3), 411-436.

[51] Meer, P., Mintz, D., Rosenfeld, A., & Kim, D. Y. (1991). Robust regression methods for
computer vision: A review. International journal of computer vision, 6 (1), 59-70.

[52] Raiffa, H. (1974). Applied statistical decision theory.

[53] https://www.sqlite.org/datatype3.html

[54] Johnson, N. L., & Kotz, S. (1977). Urn models and their application: an approach to modern
discrete probability theory (Vol. 77). New York: Wiley.

[55] Xu, F., Carey, S., & Welch, J. (1999). Infants’ ability to use object kind information for object
individuation. Cognition, 70 (2), 137-166.

[56] Henry, P., Krainin, M., Herbst, E., Ren, X., & Fox, D. (2012). RGB-D mapping: Using Kinect-
style depth cameras for dense 3D modeling of indoor environments. The International Journal
of Robotics Research, 31 (5), 647-663.

47

	Introduction
	Motivation
	Tools and methods
	Research questions
	Original contributions

	Literature review
	Object based SLAM
	Point Cloud segmentation
	Non Parametric Bayesian methods
	Correspondence

	Theory background
	Dirichlet Distribution
	Sampling methods
	Stick-breaking process
	Polya's Urn

	Dirichlet Process
	Sampling methods
	Chinese restaurant process
	Stick-breaking

	Dirichlet process mixture models
	Inference
	Generalized Polya Urn

	Model definition
	General pipeline
	The data distribution
	Sequential monte carlo sampler
	Gibbs updates
	Weight updates

	Decision Layer
	Complexity
	Landmark size

	Results
	Simple datasets
	Expressivensess and decision layer
	EKF-SLAM experiments
	Speed
	Memory requirements

	Discussion
	Data distribution
	Downsampling and Filtering
	Unsupervised learning
	Clustering layer
	Decision layer
	Scalability

	Conclusion and future work

