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Abstract

In order for autonomous mobile robots to survive in the real world they have to be aware
of the environment. The self-assembling micro robots developed in the European project
Replicator are destined for such a task. By using several modalities, these robots must be
able to detect and recognize interesting objects in the environment. This thesis presents a
biologically inspired cognitive sensor fusion architecture to create environmental awareness
in these micro robots. This architecture consists of a bi-modal attention module and multi-
modal sensor fusion. A state of the art visual saliency detection system has been optimized
and combined with biologically based sensor fusion methods to obtain a visual-acoustic at-
tention module. For multi-modal sensor fusion a new type of ARTMAP (self-organizing as-
sociative memory) called the Multi-directional ARTMAP (MdARTMAP) has been designed.
With this MdARTMAP a module for unsupervised on-going learning of sound was devel-
oped by clustering states of an echo state network, which processes cochlear filtered audio.
Also unsupervised visual object recognition was obtained with this MdARTMAP by cluster-
ing and associating salient SIFT keypoint descriptors. Based on thesemodules amulti-modal
sensor fusion system was created by hierarchically associating the MdARTMAPs of the dif-
ferent modalities. Experiments conducted in a 3D simulator showed that a simulated robot
was able to successfully perform a variety of search tasks with the cognitive sensor fusion
architecture.
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Chapter 1

Introduction

Cognitive sensor fusion is one of the mechanisms used in the European FP7 project: Repli-
cator [17] to obtain environmental awareness in micro-robots. The Replicator project focuses
on the development of mobile multi-robot organisms, which consist of a super-large-scale
swarm of small autonomous micro-robots capable of self-assembling into large artificial or-
ganisms. Due to the heterogeneity of the elementary robots and their ability to commu-
nicate and share resources, they can achieve great synergetic capabilities. The goal of the
Replicator project is to develop novel principles underlying these robotic organisms, such as
self-learning, self-configuration and self-adjustment. By using a bio-inspired evolutionary
approach the robots will evolve their own cognitive control structures so that they can work
autonomously in uncertain environments without any human supervision. Eventually these
robots will be used to build autonomous sensor networks, capable of self-spreading and self-
maintaining in for example hazardous environments. For example in the event of an earth-
quake, the micro-robots could dissemble to enter a collapsed building and then reassemble
once inside to crawl over obstacles and search autonomously for victims.

To obtain environmental awareness in the micro robots, cognitive sensor fusion will be used.
Cognitive sensor fusion is a bio-inspired process, the equivalent biological system is respon-
sible for our internal representation of the environment. The self-organization which takes
place in biological sensor fusion is the research point of interest. This master project focuses
on the development of cognitive sensor fusion through self-organization. With this project
an answer to the following research question is to be found:

How can biologically inspired sensor fusion be used in an embodied self-organizing micro-system to
increase environmental awareness?

Implementing bio-inspired cognitive sensor fusion on an embodied system can give insights
in how to benefit from self-organization in a system which interacts with a dynamical envi-
ronment. This project will also give new insights in how to develop a multi-modal saliency
detection system on a mobile robot.

The cognitive sensor fusion system will be tested in a 3D simulator where visual-acoustic
information is fused for object detection and recognition. In the experiment the robot must
be able to distinguish other robots from other objects based on low quality sound and camera
images. By using cognitive sensor fusion with different modalities the robot must be able to
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Chapter 1

detect objects earlier and recognize objects better than without sensor fusion. If the robot is
searching for a particular object, then if it hears a sound, it has to know what object, in the
sense of a visual representation, is associated with it and the other way around. So if the
robot is shown a picture of an object which he has to search for, then the robot should be able
to find that object only based on the expected sound that it makes.

The remainder of this thesis is structured as follows; In the next chapter, the theoretical
background for the parts of the cognitive sensor fusion architecture is given. In chapter
3, a description of the methodology and implementation of these parts is given. It starts
with the attention module followed by self-organizing associative memory and eventually
an implementation used for object recognition is described. In chapter 4, the implemented
modules used for the experiments and the experiment setup are described. The results of
the experiments are presented in chapter 5. In chapter 6, a summary and explanation of the
results are given followed by the conclusion and recommendations made for future work.
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Chapter 2

Theoretical Background

2.1 Biological Sensory Integration

Cognitive sensor fusion is a biologically inspired approach to integrate multiple sensor data.
To find an architecture suited for mobile robots, taking a look at how biology has imple-
mented such a mechanism is needed. Studies in the literature of multi modal integration
(MMI) have been using different species to find out more about the underlying architectures
in the brain. In mammals, integration has been found in the superior colliculus. Although
much remains speculative, some general processes can be formulated. A better understood
integration process is that of the insect brain. Neurobiological research on the insect’s ner-
vous system has identified essential elements like the mushroom bodies for multi modal
integration. A description of these two biological ”architectures” will be given below.

2.1.1 Multi Modal Sensory Integration in Vertebrates

When looking for multi modal integration in vertebrates, the superior colliculus (SC) is
found to be the main brain area involved in this integration. Neurons in the SC are respon-
sive to audio-, visual-, somatosensory-, and multi sensory stimuli. In the barn owl, visual
and auditory pathways are believed to be integrated in the deeper layer of the SC [25]. The
deeper layer is also involved in orientation-initiated behaviour such as eye saccades. Most of
the neurons in the SC are bimodal (Audio-Visual). Visual stimuli from the retina is projected
(2D image map) to the superficial SC, in a way that a certain retina location corresponds to
a neuron in the SC (retinotopic). The auditory stimuli to the SC comes from the external
nucleus of the inferior colliculus (ICx). The auditory input shows frequency specific neural
response in the central nucleus (ICc), and neural response to specific positions in space in the
ICx. The neurons in both these areas are sensitive to interaural time differences (ITD). Fre-
quency neurons (ICc) with the same ITD are mapped to a single ICx neuron. The auditory
map formed in the ICx shows a map shift due to change (error) in the visual map, in contrary
to ICc. An inhibitory network in the SCmodulates the visual signal to allow adaptation only
when auditory and visual maps are misaligned (Map Adaptation Cue: MAC) (figure 2.1).
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Figure 2.1: The schematic audio visual signal processing pathway. The circles represent neu-
rons, the filled arrows excitatory connections and the open arrow represents the inhibitory
connection between the SC’s bimodal neuron and the interneuron. The salient auditory in-
put is denoted by (A) and the spatial visual salient input by (V). If the inputs from A and V
correspond, indicating aligned A and V stimuli, the connections to the bimodal neuron are
strengthened and the interneuron is inhibited strongly. In contrast, when the A and V sig-
nals do not match, the connection strength is decreased and the inhibition of the interneuron
reduced. (Taken from [25])

In a proposed model by [25], the MAC (which is adjusted by Spike Time Dependent Plas-
ticity) resides in an ”interneuron” which is responsible for sending the visual signal to the
ICx. The sensory pathway can be divided into two sections (figure 2.1). Block I with ICc
connected to ICx, and block II with the detector of any shift between visual and auditory
cues and the controller of the ICc/ICx mapping (interneuron). The neuron response in the
visual or audio layer have a center surround profile. The firing rate of the neurons with the
difference in spike timing encodes the location of objects in the environment.

2.1.2 Multi Modal Sensory Integration in Insects

Wessnitzer and Webb [56] [55] have done several studies on the nervous system/brain of in-
sects. In [55] they have given a review about what is known about two specific higher areas
in the insect (Dorsophila) brain, the mushroom bodies and the central complex. The mush-
room bodies in most insects have similar and characteristic neuroarchitectures: a tightly-
packed parallel organization of thousands of neurons, called Kenyon cells. The mushroom
bodies are divided in: the calyces, the pendunculus and the lobes. In most insect species
the mushroom bodies receive significant olfactory input, and some also have connections
from the optic lobes to the mushroom bodies. The neurons in the output regions of the
mushroom bodies can be classified as: sensory, movement-related or sensorimotor. A large
majority responds to multiple sensor stimuli and therefore seems to be involved with sen-
sory integration. The mushroom bodies are not the only sensorimotor pathways, there exists
a parallel pathway from sensors to the pre-motor unit (figure 2.2).

4



Theoretical Background

Figure 2.2: Multi-modal processing pathways of the Dorsophila nervous system. The mush-
room bodies play an important role in the processing and integration of multi-modal in-
formation. Evidence suggests that mushroom bodies do not form the only sensorimotor
pathway for any modality, sensory areas in the brain have direct connections to premotor
areas.(Taken from [55])

A role of the mushroom bodies is pattern recognition. The Kenyon cells perform specific
processing functions on the primary sensory input to mushroom bodies. The dendrites from
the Kenyon cells to the lobes impose different filter characteristics. The Kenyon cells also
act as delay lines which could provide a mechanism for recognizing temporal patterns in
the input. The spatio-temporal properties of the Kenyon cells can act as a saliency detector
using the correlations in the input spike trains. Kenyon cells receive direct sensory input
from a modal lobe and indirect via the lateral horn arriving shortly after. The integration
time for the Kenyon cells is limited to short time windows, making them sensitive to precise
temporal correlations.

A second role is the integration of sensory and motor signals. Extrinsic neuron responses
have been reported which were selective to directions of turning behaviour. A distinction in
neural activity has also been reported for self-stimulation and externally imposed stimuli. It
is thought that an indirect pathway involving the mushroom bodies converges with more
direct pathways for hierarchical integration and modulation of behaviour.

Mushroom bodies also play an important role in associative learning and memory. Kenyon
cells show structural plasticity by growing new connections during the insect’s life time.
The Kenyon cells seem to be a major site for the expression of ’learning’ genes. Hebbian
processes underlying associative learning could reside in the Kenyon cell dendrites.

A sensor fusion method based on the structure of the mushroom bodies should be able to
perform: multi-modal saliency detection, pattern recognition using associative memory, and
integration of sensory and motor signals.
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2.2 Sensor Fusion

With respect to the sensor domain, sensor fusion can be divided in: fusion of information
from different sensor modalities that have a similar representation (single domain), and fu-
sion of complementary data from different sensor modalities that have a different represen-
tation (multi-domain). The first one can be used for extracting useful information out of a
single sensory information domain, whereas the second creates a coupling between different
sensory information domains. For example when combining vision with auditory localiza-
tion cues (spatial domain), the position of a certain object can be determinedmore accurately.
Fusing information from different domains can be done for example by fusing an audio pat-
tern and an image of an object so that there is a visual and an auditory representation of the
object. Hearing an object will then create a mental image due to association.

Single and multi domain sensor fusion are needed to enlarge environmental awareness and
the complexity of an autonomous system. Single domain sensor fusion can be seen as an
attentional mechanism, while multi domain sensor fusion can be seen as an associative pro-
cess. The in the previous section described biological sensory integration systems are exam-
ples of single and multi domain sensor fusion. Some examples of architectures that can be
used to create these types of sensor fusion systems will be described.

2.2.1 Self-Organizing Maps (SOM)

When thinking about associative memory, self-organization comes to mind. The link be-
tween multi-modal integration (MMI) and self-organization (SO) seems to be made because
of the associative processes in MMI. In the pre MMI stage associative network structures can
be found in for instance the retinotopical and tonotopical organization [31]. In ”Multi-modal
Feed-forward Self-organizing maps” by Paplinski and Gustafsson [42] a method is proposed to
build a multi-modal classification system with hierarchically constructed SOMs. The con-
struction is based on the modular hierarchical structure of the mammalian neocortex [31].
The first layer of the proposed structure is formed by three feed-forward SOMs, each for a
modality, and these maps are connected to a single multi-modal SOM. This structure incor-
porates both types of fusion: in the feed forward SOMs uni-modal multi-sensory informa-
tion is merged, and in the last map multi-modal information.

In [43] this structure was used to build a Multi-modal Self-Organizing Network (MuSON),
consisting of several Kohonen maps. With the use of a feedback connection from the multi-
modal SOM, perception of corrupted stimuli in the uni-modal SOM was enhanced (Top-
Down). This feedback loop can be compared with the recalibration after integration mis-
alignment of bi-modal information in the superior colliculus [25]. In [43] it was successfully
implemented to enhance the perception of corrupted phonemes using a bimodal map which
integrates phonemes and letters. The advantage of the MuSON in comparison with a sin-
gle SOM is the parallel uni-modal processing converging into a multi-modal map. More
complex stimuli can therefore be processed without a growing map size [43]. Bimodal inte-
gration and classification of phonemes and letters is not a complex task in comparison with
unsupervised recognition and fusion of noisy auditory and visual data. This makes it rather
uncertain whether this method is suitable for on-going learning in a dynamic and complex
environment.
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2.2.2 Reservoir Computing

Constructing a random recurrent topology with a trained single readout layer for pattern
recognition is called reservoir computing. The idea behind it is that through pre-processing
the input is transformed to the feature space which has a higher dimension and is possibly
linearly separable. Echo state networks (ESNs) [29] and liquid state machines (LSMs) [39]
are the best performing types of reservoirs. In ”An overview of reservoir computing: theory,
applications and implementations” by Schrauwen [46] a summary of the capabilities of these
methods is given. ESNs and LSMs differ on the type of node they use, but which type of
node is best suited for what task is not known. Evidence in [52] shows that spiking neurons
might outperform analogue neurons for certain tasks, like speech recognition. There also
seems to be a monotonic increase of the memory capacity as a function of the reservoir size
[52].

In ”Dynamic liquid association: complex learning without implausible guidance” by Morse and
Aktius [41] a system is constructed where a liquid state machine is combined with an asso-
ciative network for pattern recognition. The relations to the mushroom bodies are: saliency
detection using a spatio-temporal mechanism (the micro columns as reservoir), and associ-
ating different sensor modalities (sensor-motor) using an associative network.

Morse and Aktius did several experiments with a mobile robot with infra-red and collision
detection sensors. It managed to learn obstacle avoidance and showed complex behaviour.
They also conducted a classical conditioning experimentwhere they used a camera with 10 x
10 x 3 pixel values but abandoned the LSM for reasons of computational speed on a SEER-1
robot. Instead they used an ESN microcircuit, which is comparable with an LSM but has
a randomly generated continuous time or discrete time recurrent neural network with ana-
logue neurons instead of spiking neurons. This raises questions about the usability of LSMs
for computationally poor robots that use even more sensors with additional microcircuits.

In ”Training networks of biological realistic spiking neurons for real-time robot control” by Burg-
ersteiner [4], a real-time off-line LSM with one microcircuit of 54 leaking integrate-and-fire
neurons was used to create two reactive Braitenberg controllers (linear and non-linear) on a
Khepera robot. Using 6 IR sensors it was able to learn the desired behaviour. For training
they stored sensor input and motor output during a test run of the robot with a prepro-
grammed Braitenberg architecture. They used this off-line on an LSM, with the desired
motor response as target input for supervised linear regression learning. Although the used
setup is not desirable and is quit complex, they were able to show that using one micro col-
umn was enough to imitate the linear and non-linear Braitenberg behaviour on a miniature
robot.

2.3 Attention

Working with computationally poor systems requires the need of efficient processing of in-
formation. When it comes to sensor information processing, visual and acoustic data pro-
cessing are the most demanding. Without selective attention sensory systems would be
either overwhelmed or blind to important sensory information. Therefore implementing
attention mechanisms derived from biology can be helpful.
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2.3.1 Visual Attention

The visual system is not capable of fully processing all of the visual information that ar-
rives at the eye. In order to get around this limitation, a mechanism that selects regions of
interest for additional processing is used. This selection is done bottom-up, using saliency
information, and top-down, using cueing.

The processing of visual information starts at the retina. The neurons in the retina have a
center surround organization of their receptive fields. The shapes of these receptive fields
are among others modelled by the difference of Gaussian (DoG) [45]. This function captures
the ”Mexican hat” shape of the retina ganglion cell’s receptive field. These cells emphasize
boundaries and edges (figure 2.3).

Figure 2.3: The difference of Gaussian, used to model retina cells. Left the Difference of a
Gaussian is shown as a graph, and right as an intensity image.

Further up the visual processing pathway is the visual cortex area V1. Here are cells that are
orientation-selective. These cells can be modelled by a 2D Gabor function (figure 2.4).

Figure 2.4: A steerable Gabor is used to model orientation selective V1 cells. Left an example
of a steerable Gabor is shown as a graph. On the right four different steerable Gabor outputs
are shown as an intensity image.

Itti and Koch’s implementation of Koch and Ullman’s saliency map is one of the best per-
forming biologically plausible attention model [33] [28] [26]. Itti et al. [28] implemented
bottom up saliency detection (figure 2.5) by modelling specific feature selective retina cells
and cells further up the visual processing pathway. The retina cells use a center surround
receptive field which is modelled in [28] by taking the DoG. They also model orientation
selective cells using 2D Gabor filters. For each receptive field their is an inhibitory variant.
For example if an on-center off-surround receptive field shows excitation on certain input,
then the input will cause the opposite off-center on-surround receptive field to inhibit.

The sub-modalities that Itti et al. [28] use for creating a saliency map are intensity, color and
orientation. For each of these sub-modalities a Gaussian scale pyramid is computed to ob-
tain scale invariant features. For each of these image scales feature maps are created with a
receptive field and its inhibitory counter part. For the intensity sub-modality on-center off-
surround and off-center on-surround feature maps for different scales are computed based
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on the pixel intensity. For the color sub-modality feature maps are computedwith center sur-
round receptive fields using a color pixel value as centerwith its opponent color as surround.
The color combinations used for this are red-green and blue-yellow. The feature maps for
the orientation sub-modality were created using the 2D Gabor filters for the orientations 0,
45, 90, 135.

Figure 2.5: Saliency model Itti et al. [28]. This figure shows the processing pipeline of the
saliency detection model. From top to bottom: an input image is filtered on color, intensity,
and orientation using receptive fields on different scales of the input image. Using a weight-
ing process (Center-surround differences and normalization) feature maps are created for
different scales for each sub-modality (color, intensity, orientation). Through across-scale
combinations and normalization conspicuity maps are created for the three sub-modalities.
These three maps are subsequently combined into a saliency map. When modelling atten-
tional focus with this model, the inhibition of return will cause the second most salient loca-
tion to be attended. (Taken from [28])

To obtain a saliency map (figure 2.6) from all these features, a weighting process is exe-
cuted in several stages to obtain the most salient features. In the first stage feature maps
are weighted across the different receptive fields, in the second stage this is done across
the scales, and in the final stage across the sub-modalities. By combining the feature maps
obtained in the last stage (conspicuity maps) a saliency map is created.

Itti and Koch’s model has been implemented in a real-time system called the Beobot (Neu-
romorphic Vision Toolkit; NVT). A real-time systemwhich is based on their work is VOCUS
[18]. VOCUS is used in several applications such as object recognition and visual localiza-
tion [21] [20] [22]. Itti, Koch, and Ullman’ s attention model is also used for applications that
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Figure 2.6: A saliency map computed with the visual attention system of Itti et al. [28] with
the corresponding input image on the left. (Taken from [28])

are not used in real-time, such as text detection [34]. Chevallier et al. have implemented the
model using a spiking neural network (SNN) [16].

Both theNVT and the SNNmodel need a lot of computational power. The Beobot is equipped
with 4 PIII processors, and the SNN implementation has a good performancewith 1 frame/sec
(76x56 pixels) on a 2.8 Gig Core2Duo processor. The computational expensive part of the
model is the feature calculation for the different scales (see section 3.1.1). In Frintrop’s im-
plementation [18] of Koch and Ullman’s model [33], center-surround features are calculated
using integral images (see section 3.1.1). With this optimization a comparable saliency de-
tection performance can be obtained with 100 frames/sec (200x150 pixels) on a 2.8 Gig pro-
cessor.

Spike-timing which seems to be an efficient and biologically plausible way to compute
salient information [50], is computationally rather expensive for current computers. There-
fore biologically inspired real-time visual attention systems seem to need algorithms from
computer vision to create a system which is usable in real-time.

2.3.2 Auditory Attention

Just like visual information processing, audio processing is also influenced by attention.
Mechanisms exist to bias attention towards salient events so that information rich data has
a processing preference. In [32] Kayser et al. showed that visual saliency detection methods
are suitable for allocating auditory saliency. To find salient information in temporal data, a
transformation to a visual representation can be used to benefit from the more sophisticated
visual saliency detection methods. In [32] they visualized an audio stream as an intensity
image in a time-frequency representation. From this intensity image an auditory saliency
map was computed using a visual saliency detection system based on work of Itti et al. [26].
The extraction of auditory salient features was based on three types of features: the sound in-
tensity difference, the spectral contrast, and the temporal contrast. With these features they
were able to predict which sound samples would be perceived as salient by humans and
monkeys. Based on this Kayser et al. [32] concluded that saliency is determined either by
implementing similar mechanisms in different uni-sensory pathways or by the same mech-
anism in multi-sensory areas. In any case, their results demonstrate that different primate
sensory systems rely on common principles for extracting relevant sensory events.
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Methodology & Implementation

The developed cognitive sensor fusion architecture (figure 3.1) is broadly based on the earlier
described audio-visual integration process found in the brain of vertebrates, and the multi-
modal integration process in the well studied nervous system of the fruit fly (Drosophila
Melanogaster). In this architecture environmental awareness is obtained through bi-modal
attention, via audio-visual saliency detection and binaural localization; and through audio-
visual object recognition via multi-modal associative memory (sensor-fusion).

In the cognitive sensor fusion architecture in figure 3.1 two types of sensor fusion are shown
on the left and right. These are respectively multi-modal sensor-fusion using Associative
Memory, and early stage sensor fusion used for Bi-Modal Attention. This architecture focuses
on integrating visual and auditory information, but associating other sensory information is
also possible.

The first step in early stage sensor fusion is saliency detection. Visual saliency detection is per-
formed on the camera image (see section 3.1) and on the visual representation (cochleogram)
of an audio stream (see section 3.2). Based on the saliency information from the camera im-
age a spatial location is computed. The saliency information from the cochleogram is used
to select the audio regions to compute the binaural cues from. The binaural cues and the
visual salient location are used for Bi-modal Attention (see section 3.3). Based on the saliency
information in both modalities, audio-visual object recognition is initiated. After audio pre-
processing (see section 3.6) and image feature extraction (see section 3.7) both sensory data
are fused using Associative Memory (see section 3.5).

In the next sections these modules will be described in more detail, starting with early stage
sensor fusion: visual and bi-modal attention, followed by multi-modal sensor fusion: unsu-
pervised visual and auditory object recognition and association.
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Figure 3.1: The cognitive sensor fusion architecture. In this abstract representation of the
architecture, modules are visualized by blocks and information streams by arrows. Bi-Modal
Attention pathway: The Visual Saliency Detection module receives a camera image and com-
putes a saliency map. The Visual Location module returns the location of the most salient ob-
ject. The Cochlear Filter filters the audio stream from the microphone. The Auditory Saliency
Detection module computes a saliency map from a cochleogram, after which the Binaural
Cue Computation module computes the binaural cues from the salient audio. The Bi-Modal
Attention module integrates the binaural cues and the visual location. Associative Memory
pathway: The Feature Extraction module computes image features from the salient image
region. The Reservoir module transforms the cochlear filtered audio to feature space after
which the audio and visual features are associated in the Associative Memory module.
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3.1 Visual Saliency Detection

The visual saliency detection architecture that will be described in this section is derived
fromwork of Itti et al. [28] and Frintrop et al. [19]. The proposed architecture is implemented
in the 3D simulator Symbricator and will therefore be referred to as: Symbricator3D Image
Saliency-based Computational Architecture (SISCA). Itti et al. [28] implemented bottom up
saliency detection (figure 3.2) by modelling specific feature selective retina cells and cells
further up the visual processing pathway. The retina cells use a center surround receptive
field which is modelled in [28] by taking the difference of Gaussian (DoG). They also model
orientation selective cells using 2D Gabor filters. The features that they use for creating a
saliency map are intensity, color and orientation. For each of these features a Gaussian scale
pyramid is computed to obtain scale invariant features using receptive fields.

Figure 3.2: Saliency model Itti et al. (Taken from [28])

Frintrop et al. [19] created a modified version of Itti and Koch’s model called VOCUS. The
first version of VOCUS was aimed at creating a better performing system. Simplifications in
Itti and Koch’s model in comparison to the biological analogue were changed in VOCUS to
obtain a biologically more plausible model and a better performance. The drawback of these
changes was the high computational complexity of the system which made it not suitable
for real-time usage. To obtain a real-time saliency detection system they changed one of
the most computational expensive parts, the calculation of the center surround difference.
Instead of using a Gaussian scale pyramid they used integral images and computed the
center surround difference by taking the difference of mean (DoM) (figure 3.3).
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Figure 3.3: The visual attention system VOCUS. VOCUS is based on the saliency map com-
putation of Itti et al. [28]) (figure 3.2). It has the same processing stages: linear filtering of
the input image followed by the creation of image pyramids, scale maps, feature maps, con-
spicuity maps and the saliency map. The main difference in VOCUS is that the computation
of the Image Pyramids for intensity and color is done with integral images. (Taken from [19])

Although the improved version of VOCUS has gained much processing speed there is still
room for improvements. In order to preserve their original structure with scale pyramids
they chose to use separate integral images for each scale instead of just one integral image.
They also chose to keep the Gabor filter instead of an approximation for better performance.

SISCA (figure 3.4) is mostly based on VOCUS. It also uses integral images for faster center
surround computations, but to increase computation speed the 2D Gabor filters are replaced
byHaar-like features in combination with rotated integral images to compute the orientation
feature maps. Other changes on different levels have been made for a better speed accuracy
ratio. These will be discussed in the following sections.
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Figure 3.4: The implemented Symbricator3D Image Saliency-based Computational Archi-
tecture (SISCA). SISCA is mainly based the visual attention system VOCUS. The main dif-
ferences between these systems are that in SISCA no image pyramids are computed to ob-
tain the scale maps but instead integral images are used to compute the color and intensity
features and a rotated integral image is used for to compute the orientation features. The dif-
ferent scales are obtained using different receptive fields sizes in the Center-surround filtering
using Haar-features.

3.1.1 Scale Invariant Feature Extraction

The main difference between the visual attention system of Itti et al. [28], VOCUS [19] and
the new proposed architecture SISCA is the computation of the scale invariant features. As
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described in section 2.3.1, features can be extracted using filters which are based on the re-
ceptive fields of retina cells and cells from the visual cortex area V1. Because the traditional
calculation of these features with respectively a DoG filter and Gabor filters is computation-
ally expensive, an approximation of these filters can be used. Haar-like features in combi-
nation with integral images [54] can be used to obtain such an approximation. In VOCUS
only the DoG filter is approximated (figure 3.5). To decrease the computation time even
further in SISCA, extended Haar-Like features with rotated integral images [36] are used to
approximate the Gabor filters. In the next sections the different methods are elaborated on.

Figure 3.5: The center surround receptive field approximation of a retina cell. Left the DoG,
and right the Haar-like equivalent.

Gaussian Scale Pyramids

In [28] Gaussian scale pyramids are used for scale invariant receptive field feature extraction
(figure 3.6). It is a commonly used method in image processing, but it is computationally
rather expensive. In VOCUS Gaussian pyramids are only used to compute scale invariant
features. Different image scales are normally used so that the filter mask with which an
image is convolved does not have to change. The convolution of an image with a larger
mask is rather time consuming, O(nm) where n is the number of pixels in the image and m
the number of entries in the filter mask.

Figure 3.6: Gaussian scale pyramid. The layers of the image pyramid are obtained by sub-
sampling or downsampling the previous layer (typically by taking every 2nd pixel), starting
with the original image on level 0. (Taken from [18])

When a Gaussian pyramid is used, several processing steps have to be taken. First the input
image needs to be scaled down, which can be done by sub-sampling. Sub-sampling can
lead to aliasing and to overcome this problem the spatial frequencies of the image which are
above the sampling frequency must be removed. This can be done by smoothing the image
with a Gaussian filter before sub-sampling it. When the receptive field filter is applied the
filtered image needs to be scaled up/back. In [28] they used 9 spatial scales and all filtered
maps are resized to scale 4. In VOCUS they used 4 scales, 2 receptive field sizes, and all
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maps are resized to scale 2. When scaling up some sort of interpolation needs to be used for
anti-aliasing. In the first version of VOCUS nearest neighbor interpolation was used, and in
the later version bilinear interpolation, a more accurate but also more expensive method.

Integral Images

Computing scale invariant receptive field features with integral images is faster because the
computation of the average value of a region only needs a few lookups and additions (figure
3.7), it is independent of the filter size, and creating an integral image requires only one scan
over the input image.

Figure 3.7: Integral image. Left: the value of pixel I(x,y) is the summation of the pixels in the
grey area. Right: the computation of the shaded area based on four operations. (Taken from
[19])

By using Haar-like features in combination with integral images, a fast and good approxi-
mation of the DoG and first order Gaussian filters can be obtained (figure 3.8).

Figure 3.8: Receptive fields. Left: from left to right: 0 and 90 degrees first order Gaussian
steerable filters (Gabor) and a 2D DoG. Right: the analog Haar-like filters.

3.1.2 Rotated Integral Images

When using integral images only simple rectangle Haar-like features can be created. In or-
der to approximate second order Gaussian filters (see section 2.3.1) with Haar-like features,
Rotated Integral Images (RII) (figure 3.9) can be used. The RII can be created using two
scans over the input image. With a RII, 45 and 135 degree second order Gaussian filters
can be computed (figure 3.10). These are called extended Haar-like features. With all these
Haar-like features the three feature maps can be created.
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Figure 3.9: Rotated Integral image. Left: the value of pixel I(x,y) is the summation of the
pixels in the Grey area. Right: the computation of the shaded area based on four operations.
(Taken from [36])

Figure 3.10: Receptive fields. Left: a 45 and 135 degree Gabor filter. Right the equivalent
extended Haar-like features.

3.1.3 Receptive Fields (On-center Off-center)

The retina consists of cells which have an on-center off-surround or off-center on-surround
receptive field. In [28] these two types of receptive fields are combined by taking the absolute
value of the difference between center and surround. A problem with this approach, which
is also addressed in [19], is that this will lead to a wrong pop-out when the difference with
the background is the same for on-center and off-center. Therefore the computation of the
on-center off-center receptive field in SISCA is done separately, and the map with the most
information is promoted which leads to the right pop-out (figure 3.11).

Figure 3.11: Saliency pop-out using separate on-center off-center computations with SISCA.
(a) the input image (b) on-center off-surround intensity difference (c) off-center on-surround
intensity difference (d) intensity feature map

3.1.4 Receptive Fields (Scales)

In order to obtain scale invariant features the Gaussian pyramid is replaced by different
receptive field sizes. When using the Gaussian pyramid each scale reduction reduces the
image dimensions from (n ∗ n) to (n

2 ∗ n
2 ), this is more or less equivalent with increasing the

receptive field size by 2. Applying a larger receptive field size does not change computation
time. It is faster than scaling down an image to find scale invariant features, because no
anti-aliasing has to be applied. Another positive aspect of using the original size is that the
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output image has far more details (figure 3.12). This gives the possibility to use a lower
resolution for the original image.

Figure 3.12: Saliency maps, white is more salient (normalized for printing). Top left: input
image. Top right: Itti et al. [28] saliency map. Bottom left: SISCA saliency map using 4 scales,
bilinear interpolation to scale 0 and 3 receptive field sizes: 2, 4 and 8 (without distribution
as weight). Bottom right: SISCA saliency map using original scale and 9 receptive field sizes
(without distribution measure as weight).

3.1.5 Feature Maps

For each sub-modality and receptive field a feature map will be created. SISCA uses three
sub-modalities: intensity, color and orientation, and between 8-12 receptive field sizes. The
intensity feature map set consists of feature maps with on-center off-surround and off-center
on-surround receptive fields. The color map set is created using a systemknown in the cortex
as ”color double-opponent”. In the center of the receptive fields, neurons are excited by one
color and inhibited by another. This relation exists for: red/green, green/red, blue/yellow,
yellow/blue. As in [28], these colors are broadly-tuned: red = r - (g + b) / 2, green =g - (r +
b) / 2, blue = b - (r + g) / 2, and yellow = (r + g) / 2 - |r - g| / 2 - b. The orientation map set
consists of 4 different orientation maps: 0, 45, 90, and 135 degrees, which are created using
the corresponding Haar-like edge filters.
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Figure 3.13: Feature maps created with SISCA (intermediate normalization). First row: the
input image and the on-center and off-center intensity maps. Second row: the color maps,
red/green, green/red, blue/yellow, yellow/blue. The third and fourth row the on-center
and off-center maps for orientations: 0, 90, 45, and 135 degrees.

3.1.6 Fusing Receptive Field Specific Feature Maps

A feature map set with different receptive field sizes needs to be fused into one feature map
(figure 3.13). Because there are a lot of feature maps, and some maps have less information
than others, merging the maps can cause information to get masked (curse of dimensional-
ity). Therefore the maps first need to be weighted to promote information rich maps and
suppress maps that contain nothing unique (figure 3.11). After weighting the maps they are
merged using point-to-point pixel addition.

Promoting information rich maps is an important aspect of the saliency detection system.
Determining which map has the most information is not a trivial job. In [28], Itti et al. pro-
pose a map normalization operator. This operator works as follows:

• normalize the values in the map to a fixed range [0..M], in order to eliminate modality-
dependent amplitude differences;

• find the location of the map’s global maximum M and compute the average mu, of all
its other local maxima;

• globally multiply the map by (M − mu)2
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One of the problems with this method was already pointed out in [27]. Taking the difference
of the global and local maxima only works when there is just one strong peak. With two
strong peaks the difference becomes zero which will result in suppressing the map. To over-
come this problem they used a more complex iterative process, by local competition between
neighbouring salient locations.

In the VOCUS system they used a more simple approach:

• Determine the global maximum M.

• Count the number of local maxima N above a predefined threshold from M.

• Divide each pixel by the square root of N.

The threshold was determined empirically and was set to 50% of the global maximum.

A reason given in [19] not to normalize themaps to a fixed range but only weigh them, is that
normalizing maps to a fixed range removes important information about the magnitude of
the maps. They only apply normalization to create the conspicuity maps, but not to a fixed
range. Their motivation is that normalization is needed to make them comparable. Why this
does not remove important information about the magnitude of the map is not mentioned.

3.1.7 Suppression, Promotion and Normalization

One of the main differences that can be seen when comparing both map weighting ap-
proaches is the promotion and suppression of maps. In [28] and [27] maps with more in-
formation are promoted more than maps with less information, while the information rich
maps in VOCUS are suppressed less than maps with less information. This in combina-
tion with or without normalization gives remarkably different results when implemented
in SISCA (figure 3.14 and 3.15). When considering maps with a lot of noise and not much
information, suppression will wipe these maps out at an early stage by reducing the pixel
values to 0 (due to the use of integer values) before creating a feature or conspicuity map.
While promotionwill let maps with only noise and not much information exist. Fusing these
maps in the end by taking the sum or average will still give rise to the noise. This approach
also leads to saliency maps where there is always a salient region even when there is nothing
salient in the scene. Applying suppressionwill yield a totally black saliency map when there
is nothing salient in the scene.

Figure 3.14: SISCA: Effect of noise on map weighting and normalization. From left to right:
the input image, the intensity map, the color map, the orientationmap and the saliency map.
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Figure 3.15: SISCA: Effect of only applying normalization to the feature maps when creating
conspicuity maps. From left to right: the input image, the intensity map, the color map,
the orientation map and the saliency map. The effect of only normalizing the maps when
creating conspicuity maps like in [19] instead of normalizing all the maps like in [28], shows
that noise has far less influence on the saliency map (figure 3.14). The color map which
mostly consists of noise is totally suppressed in this figure.

3.1.8 Map Weighting

The weight methods used in [28] and [19] are both very sensitive to noise. If a few white
pixels are encountered the weight value is set very high which results in promoting (or less
suppression) the map due to a small amount of peaks while all other pixel values could
be fairly low. In order to weight a map based on its maximum pixel value noise has to be
removed. Because SISCA uses the original image size the image has to be smoothed first
before it can be normalized and weighted, otherwise noise can mask the signal (figure 3.16).

Figure 3.16: Effect of smoothing in SISCA (normalization for creating conspicuity maps
only). Top row un-smoothed input image and saliency map. Bottom row: smoothed in-
put image and saliency map.

Another drawback of the earlier mentioned weight functions is the bias for salient areas
of small volume. A salient blob can contain a lot of pixels, and because only one peak is
favoured this blob is considered less salient than a few pixels scattered around an image.
This effect is especially noticeable in SISCA because it uses higher resolution feature maps
than used in [28] and [19]. To overcome this problem another measurement has to be taken
into account. A measure used in SISCA is the distribution of the peaks. A map is suppressed
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more when a lot of peaks are found that lie far from each other than when the same amount
of peaks lie close to each other. The distribution is measured by taking the median of the
squared Euclidean distances from the global maximum M to the other peaks. The other
peaks are pixels with a value higher than a predefined threshold (50%) from M. Figure 3.17
shows the effect of taking the peak distribution into account. Without the distribution as
weight the most salient location in figure 3.17 is on the middle red men.

Map weighting in SISCA is done as follows:

• Determine the global maximum M.

• Count the number of local maxima N above a predefined threshold from M.

• Calculate the squared Euclidean distances from M to N and find the median U.

• Divide each pixel by the square root of U times N.

• Multiply the pixel with the feature weight W.

Figure 3.17: SISCA: Effect of peak counting as weight function (1e row) vs the addition of
the distribution as weight value (2e row). From left to right: smoothed input image (sigma
2), intensity map, color map orientation map, and the saliency map.

3.1.9 Top Down Cueing

For top down saliency detection the map weighting method is equipped with a feature
weight W. This weight value can be determined through learning in a particular environ-
ment, where a certain feature is more useful than others, or it can be set according to the
search task. By setting a higher value for for example the red/green feature, red objects will
become more salient.
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3.1.10 Conspicuity Maps

Conspicuity maps are created for the three sub-modalities: intensity, color and orientation
(figure 3.12). A conspicuity map is created by fusing the feature maps of a sub-modality.
These maps are created in [28] by using the same normalization operator as with the feature
maps. Their motivation for creating three separate channels, intensity, color, and orientation,
and their individual normalization is the hypothesis that similar features compete strongly
for saliency, while different modalities contribute independently to the saliency map. In [19]
the conspicuity maps are created by first normalizing the feature maps before fusing. The
values are normalized between 0 and the maximum pixel value of all feature maps of a sub-
modality. SISCA uses fixed scale normalization and the same weight function as for creating
the feature maps. Finally the saliency map is created by weighting the conspicuity maps and
subsequently fusing the maps using point-to-point pixel addition (figure 3.18).

Figure 3.18: SISCA: Conspicuity maps and the saliency map. From left to right, the input image,
the intensity map, the color map, the orientation map and the saliency map. The conspicuity
maps are computed with smoothing factor 2, 8 receptive field sizes, peaks and distribution
measure as weight function, and feature map normalization for creating the conspicuity
maps.
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3.2 Auditory Saliency Detection

The detection of salient audio is based on the earlier mentioned method of creating an au-
ditory saliency map [32]. This auditory saliency map can be computed using the previously
described saliency detection system. Because the visual attention system SISCA also allows
top down cueing, higher weight values can be assigned to feature maps that highlight the
appropriate auditory features.

Three auditory features are used for creating the auditory saliency map. The first feature is
the intensity. In the visual representation of the audio data (figure 3.19) foreground sound is
represented by the red color. Therefore giving the red-green feature maps in SISCA a higher
weight value will result in finding salient audio based on intensity. The second feature is
the frequency contrast. Frequencies are displayed along the vertical axis in the image, which
means that a horizontal line represents a tone on a certain frequency. To detect the frequency
contrast the feature maps that highlight horizontal edges is given a higher weight value.
The last feature is temporal contrast. Because the horizontal axis represents time, the feature
maps that highlight vertical edges is given a higher weight value.

Figure 3.19: Salient audio detection. A cochleogram is used as input image for auditory
saliency detection. Using the visual saliency detection system SISCA a saliency map is created
from the cochleogram. Based on the salient region the start and end of the salient audio is
determined.

3.2.1 Cochlear Filtering

The visual representation that is used for the auditory saliency map is a cochleogram. A
cochleogram is a visual representation of audio that is filtered using a cochlea model. In
a cochleogram audio is visualized using three dimensions: along the horizontal axis time,
along the vertical axis frequency and through color the intensity.

The cochlea is a snail-shaped organ (figure 3.20) that is responsible for converting sound
waves into a neural and spectral representation. The cochlea model performs a frequency
analysis like that of a Fast Fourier Transform (FFT). But the advantage over a FFT is that a
cochlea analysis has continuity in time and frequency.

The cochlear filteringmethod used here isMalcolm Slaney’s implementation of Lyon’s Cochlear
model [48]. The model describes the propagation of sound in the inner ear and the conver-
sion of the acoustical energy into neural representations. The cochlear has a strong com-
pressive non-linearity over a wide range of sound intensities. This model unlike many other
cochlea models takes the non-linearity into account and explicitly recognizes the purpose
of the strong non-linearity as an automatic gain control (AGC) that serves to map a huge
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Figure 3.20: A schematic illustration of the human inner ear and cochlea

dynamic range of physical stimuli into the limited dynamic range of nerve firings [38]. The
model combines a series of filters that model the travelling pressure waves with Half Wave
Rectifiers (HWR) to detect the energy in the signal at several stages of the AGC (figure 3.21).

Figure 3.21: The structure of Lyon’s cochlear model (figure from [48])

An important characteristic of the cochlea is that each part of the cochlea has its own reso-
nance frequency. This has the result of mapping frequencies into the spatial domain.
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3.3 Bi-Modal Attention

Early stage sensor fusion as can be found in the superior colliculus (section 2.1) lies at the ba-
sis of bi-modal attention in vertebrates. The superior colliculus is an integrator for auditory
and visual information. It fuses these modalities in the spatial domain through bi-modal
neurons which are responsive to interaural time differences (ITD) but also show a different
sensitivity to changes in the retinotopic visual map. The mapping of the interaural cues
to a spatial location (azimuth) is learned by aligning the visual location and the perceived
auditory cues [25]. Learning this mapping in contrast to hard coding the relation is impor-
tant when dealing with a morphodynamic organism like the Replicators. Interaural time
and intensity difference are two cues which are often used for auditory localization which
is then called binaural localization. The implemented bi-modal attention system is based on
binaural cues and a visual salient location.

3.3.1 Binaural Localization

The localization of an object through sound is done via binaural localization of salient audio.
In order to use binaural localization to steer the robot’s attention, cues must me computed
from salient audio, otherwise background and internal noise would cause unwanted be-
haviour and wasted processing time.

Salient audio is detected with the earlier described auditory saliency detection module.
Based on the frequency of the input signal and the frequency bandwidth parameter, called
step factor, a certain amount of channels for different frequencies are created for an audio
sample. A channel contains the spike rate of the hair cells for a certain frequency in time.
Another parameter to adjust the quality (and computational complexity) of the cochlear out-
put is the decimation factor. With this parameter the output can be sampled at a different
rate. Depending on the step factor and decimation factor a cochleogram of a certain size is
computed for the audio samples of both audio channels. A parameter that can be set for
the cochleogram is to use absolute energy or not. If absolute energy is not used the max-
imum intensity will be set to the highest value of the cochlear output. Because intensity
is also a salient feature, absolute energy is used to keep the relative difference. From the
cochleograms of the left and right channels salient regions are computed. Based on the start
and end of the salient region a region of the cochlear filtered audio is used to compute bin-
aural cues from.

Binaural cues

The first interaural cue used for binaural localization is the intensity difference. The differ-
ence in the salient region is computed by subtracting the left cochlear filtered audio from the
right.

The other binaural cue, interaural time difference, is computed bymeans of cross-correlation.
The time difference is computed by correlating frequency channels from the cochlear filtered
left and right audio channel. In order to obtain a good measurement of the time difference
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between the two channels, every sample of the cochlear output must be used which is a
decimation factor with value 1.

A Simple method to calculate the correlation is shown in the formula below. Consider two
series x(i) and y(i) where i = 0, 1, 2, ..., n − 1. The cross correlation r at delay d is defined as:

r(d) =

∑

i

[(x(i) − mx) ∗ (y(i − d) − my)]

√

∑

i

(x(i) − mx)2
√

∑

i

(y(i − d) − my)2
(3.1)

Where mx and my are the means of the corresponding series, and delays d = 0, 1, 2, ..., n − 1.

The location where the correlation has the maximum value is considered as the delay. This
delay is measured in samples. If the maximum value lies to the left of the center then y is
delayed, and if it lies to the right of the center then x is delayed. The length of the correlation
series is twice the length of the original series if delays from 0 to n are used. Based on the
computed cross-correlation a correlogram can be created as can be seen in figure 3.22. The
values of the two binaural cues are normalized to a value between 0 and 1, where 0 means
left and 1 means right. Because there is noise and no uniform distribution of cue value
occurrences, it is important to at least determine where the boundaries of the center are to
be able to make a good prediction of the location of an object.

Figure 3.22: Correlogram of two identical signals x and y with n = 5000 where signal y is
delayed.
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Audio-visual integration

For binaural localization binaural cues need to be related to a spatial location. The map-
ping of cue values to a location is done through Hebbian learning. As in [25] audio-visual
information is obtained from a visual salient object that emits an auditory salient sound.
The spatial location is obtained from the visual saliency detection module by translating the
salient location into a degree value in the field of view, which ranges from -60 to 60. This
results in 121 locations which are used as input for a Hebbian network. The two binaural
cues are also used as input and have the same amount of inputs as the amount of visual
locations. Because the occurrences of cue values do not have a uniform distribution between
0 and 1, the boundaries of the cue values are first searched for by associating the minimum
(-60 or 0) and the maximum (60 or 121) from the visual input to the calculated binaural cues.
Because the field of view is only 120 degrees and sound is perceived in 360 degrees, all the
values above these boundary cue values are classified as either left or right, respectively -90
or 90 degrees.

This Hebbian learning process is influenced by a few parameters. One of the parameters is
the number of input neurons. To speed up the learning process the visual field can be di-
vided in less than 121 locations, for instance when 5 locations are used then 2 decode the left
half, one the middle half and 2 the right half (figure 3.23). This way lesser locations need to
be visited in the visual field by the salient object to learn the associations of these locations.
Other parameters are the learning rate and the update range. When a lot of input neurons
are used updating nearby connections with a Gaussian function can also speed up the learn-
ing process. This method is suitable because of the relation between the real spatial location
and the location of the input neurons.

Figure 3.23: An abstract associative network for associating five visual locations to an inter-
aural cue.
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3.4 Associative Memory

When we look at biology, multi-modal sensor fusion as seen in the nervous system of in-
sects is an associative process [55]. The modalities in which a perceived object is encoded
have different dimensions in which they represent the features of the perceived object. These
could be visual features, audio-temporal features, olfactory, tactile, etc. Fusing all this infor-
mation will lead to the perception of that specific object or a category of objects. This way
of fusing information could be based on a hierarchical architecture where there is on the
highest level a single neuron that encodes an object in the brain based on a network of all
the features from the different modalities at different abstraction levels. Whether a partic-
ular object (single neuron) is activated by a set of features depends on the associations that
these features have with all other percepts of objects in the memory. A feature that is very
distinctive for a particular object could by itself activate this object together with all its un-
derlying features from other modalities that encode this object into consciousness. This is
the proposed foundation for the multi-modal cognitive sensor fusion architecture which has
as basis associative memory.

This proposed idea for multi-modal cognitive sensor fusion can be supported by recent dis-
coveries of single neurons that encode multi-modal percepts in the human brain. Quiroga
et al. [44] researched how different stimulus modalities can evoke the same ”concept” of
for instance a famous person by seeing a picture or by hearing or reading the name. They
showed that (1) single neurons in the human medial temporal lobe (MTL) respond selec-
tively to representations of the same individual across different sensory modalities; (2) the
degree of multi-modal invariance increases along the hierarchical structure within the MTL.
With their current data it was not possible to provide a conclusive mechanistic explanation
of how such abstract single-cell multi-modal responses arise, but evidence points toward a
role of the MTL in forming associations by for instance linking faces with written and spo-
ken names. Recognized abstract patterns from different modalities are thus associated in
one location where the concept of an object is stored. In the lower part of the hierarchy
uni-modal neurons like in the inferior temporal cortex (IT) (which respond to visual stimuli)
encode percepts in a distributed way, and have a limited degree of invariance which makes
them responsive to similar but also slightly different percepts. This type of information from
multiple sensory modalities are associated into a single percept in the MTL.

In the following section all the separate parts of the proposed multi-modal sensor fusion ar-
chitecture will be described. Starting at the bottom of the processing hierarchy, a distributed
clustering and pattern recognition method will be described that resembles the function of
the IT neurons / Kenyon cells, followed by the description of an associative memorymodule
that creates a multi-modal percept like in the MTL / mushroom bodies.

3.4.1 Adaptive Resonance Theory

The Adaptive Resonance Theory (ART) is a theory about information processing and storage
in the brain. It was developed by Grossberg and Carpenter [15]. Principles derived form an
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analysis of experimental literatures in vision, speech, cortical development, and reinforce-
ment learning, including attentional blocking and cognitive-emotional interactions, led to
the introduction of adaptive resonance as a theory of human cognitive information process-
ing [15]. The first version of ART also called ART-1 is an unsupervised binary clustering or
pattern matching system. The basic model of all the ART systems (figure 3.24) consist of a
short termmemory input pattern (F1) which is matched against patterns that are in the long
term memory (F2). An input pattern could either be in resonance with a long term memory
node, which means that the input pattern matches the pattern in memory to a satisfying
degree, or there could be no pattern in memory that resembles the input pattern which then
leads to the storage of the input pattern as a new memory node. This match-based process
is the basis of the ART system that deals with the stability-plasticity dilemma.

Figure 3.24: An abstract representation of the ART network. The input pattern has M ele-
ments and is put in short term memory F1. The pattern from F1 is compared to the patterns
in long term memory F2. P is the vigilance parameter which specifies the amount of resem-
blance needed between F1 and a F2 node for a match.

Within the ART system an F2 memory or category node is chosen as possible candidate
based on its similarity with the input pattern. The similarity is denoted by the signal value
Tj (see equation (3.2)). The memory node with the highest signal value is selected for a
resonance test. The ART system provides stability through the matching criteria parameter
P called vigilance. With the vigilance parameter the amount of resemblance needed for a
match can be set in the form of a minimum confidence value (see equation (3.3)). With a low
vigilance value there has to be less resemblance to have resonance, this leads to fewer and
more abstract memory nodes. Whereas a higher vigilance value will lead to more memory
nodes that only have resonance with very similar input.

Learning within the ART system is done by storing a new input pattern if no resonance
with F2 is found, or by updating the memory node which is in resonance with the input.
Updating the weights of the existing node is done in such a way that it is monotonically
non-increasing, it will always be able to classify earlier learned patterns. If fast learning is
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used the weights of the memory node are updated in a way that the input pattern just falls
within the memory node’s boundaries (see equation (3.4)). If slow learning is used then the
memory node is updated only a small fraction in the direction of the presented input pattern.

ART 1

Category choice:

Tj =
|I ∩ wj |

α + |wj |
(3.2)

where Tj is the signal value, I is the input vector, wj the weight vector of the Jth F2 memory node, and α the

signal rule parameter

Match criterion:

|I ∩ wj |

I
≥ p (3.3)

Fast Learning:

wnew
j = I ∩ wold

j (3.4)

During the years several types of the ART systems have been developed. After the binary
ART, ART-1, a variant was made to support continuous inputs which is called ART-2 [8]. A
streamlined version of the former is ART-2A [11], this version needs less computation time
and has only slightly worse qualitative results. Fuzzy-ART [7] uses fuzzy logic in pattern
matching and has a means of incorporating the absence of features into pattern classifica-
tions through complement coding. In Fuzzy ART the logical AND ∩: intersection is replaced
by the fuzzy AND ∧: minimum.

Preventing category proliferation while monotonically non-increasing the memory node’s
weights is in Fuzzy-ART achieved by using a complement coded input (see equation (3.5)).
A complement coded input pattern is a vector with normalized input values [0,1] where the
second half of the vector consists of the complement values of the first half. The sum of
the vector equals the length of the vector. In figure 3.25 it is shown that the cluster size is
enlarged when the weight values are updated by taking the maximum vector values of two
compared patterns.

Ic = (I1, I2, ..., Im, 1 − I1, 1 − I2, ..., 1 − Im) (3.5)

Figure 3.25: Fuzzy art cluster representation. (a) Having a two dimensional complement
coded input vector, each weight vector wj has a geometric interpretation as a rectangle Rj

with corners (uj , vj). (b) Updating the weight for input a with fast learning, Rj expands to
Rj ⊕ a, the smallest rectangle that includes Rj and a, while satisfying the match criterion.
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3.4.2 ARTMAP

An extension to theARTnetwork for supervised learning is theARTMAP [10]. TheARTMAP
provides means to steer the clustering process by a secondary ART network with the cor-
rect output. The correct output classes for each input pattern is learned with an associative
network. The structure of the ARTMAP is as follows, it consists of an ART network for
classifying input patterns let’s say ARTa, a secondary ART network with the correct output
say ARTb, and an associative learning network that links ARTa to ARTb called the map field
(figure 3.26).

Figure 3.26: An abstract representation of the ARTMAP network. This ARTMAP consists
of two ART networks ARTa and ARTb. ARTb is the supervisor network that is able to send
a reset or match track request to ARTa when the output of ARTa is inconsistent with the
expected output calculated by ARTb through map field Fab.

The ARTMAP is trained by providing an input pattern a for ARTa and the correct output b

via ARTb. ARTa processes the input pattern by finding a memory node J that is in resonance
with the input based on a minimum confidence value pa. When no match is found a new
node is created in memory that resembles the input pattern. This memory node is then
connected via a map field node X to the output node K of ARTb which is established with
the same matching processes. In the case where there is a match found in ARTa, the winning
memory node J will activate via its weights wab

j a map field node X, if ARTb is active,
then only if output node K from ARTb activates the same map field node X via its one-to-
one pathway, F ab will become active. Similar to ART, a vigilance parameter pab is used to
determine if the activation is in resonance.

If ARTa activated a different map field node than ARTb, equation (3.6) is not satisfied and a
match tracking process is started in ARTa. A better match is searched for by slightly increas-
ing the confidence or vigilance parameter pa so that the previous winning memory node is
no longer a candidate. This match tracking process will eventually end in a correct match or
a new memory node that will be associated via the map field with the correct output node
of ARTb. With fast learning the weights wab

jk from ARTa node J to ARTb node K is set equal
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to 1, which makes it a permanent association.

|X|

|K|
≥ pab (3.6)

where

X =















K ∩ wab
j if the Jth F a

2 node is active and F b
2 is active

wab
j if the Jth F a

2 node is active and F b
2 is inactive

K if F a
2 is inactive and F b

2 is active
0 if F a

2 is inactive and F b
2 is inactive

Testing is done by providing an input pattern for ARTa after which a winning memory node
is selected using a Winner Take All (WTA) method. This winning node activates the associ-
atedmemory node of ARTb via the connections in themap field. The output of this ARTMAP
could be a class label associated with the input pattern via ARTb.

Many variants of the basic ARTMAP networks have been created to name a few: fuzzy
ARTMAP [9], ART-EMAP [14], ARTMAP-IC [12], and the distributed ARTMAP [13]. Com-
parative analysis of these networks has led to the Default ARTMAP [6] and the Default
ARTMAP 2 [2], which has a simplified design and a better performance in many applica-
tion domains. The default ARTMAP is the same as fuzzy ARTMAP during training, but
uses a distributed winner selection during testing. ARTMAP-IC is the same as the default
ARTMAP plus instance counting, this biases a category node’s test set output by the number
of training set inputs coded by that node. The distributed ARTMAP uses a distributed win-
ner selection during both training and testing and also uses instance counting. The Fuzzy
ARTMAP is the basis for all these ARTMAP variants, and uses the earlier described WTA
method. The difference between the Fuzzy ARTMAP and the first ARTMAP is the use of
Fuzzy ART networks for pattern recognition. The default ARTMAP also implements the
match tracking search procedure, with the baseline vigilance parameter equal to zero for
maximal code compression, and uses fast learning.

The ARTMAP is well suited for unidirectional supervised learning tasks where there can be
a many-to-one mapping of input patterns to output classes. Due to match-tracking and the
match criteria in the map field, bidirectional and many-to-many associations are not pos-
sible. A variant of the Fuzzy ARTMAP that deals with this problem is the Bi-directional
ARTMAP (BiARTMAP) [5]. By introducing a second map field that handles the associations
and the match track process in the other direction, the BiARTMAP is able to handle bidi-
rectional mappings ranging from one-to-one to many-to-many. With BiARTMAP both ART
networks, ARTa and ARTb, can be either used as input or as output network.

Although the associative capabilities of the BiARTMAP network starts to look more like the
biological associative process, it still lacks on a few aspects. One main aspect that all the
ARTMAPs have is supervised learning. In order to use associative memory in an ongoing
learning setting, where there is no separate learning phase, unsupervised associative learn-
ing must be possible. Another important aspect is the lack of being able to associate multiple
ART networks in a network that is multi-directional. BiARTMAP enables bidirectional as-
sociation and lookup by means of a second map field. Increasing the number of map fields
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together with the number of input ART networks seems not only very unlikely from a bio-
logical perspective, but also unnecessary complex and computationally expensive. Because
the BiARTMAP is based on the Fuzzy ARTMAP it also does not use a distributed winner
selection in the testing phase. A distributed winner selection as can be seen in the default
ARTMAP leads to a better performance and is also more plausible from a biological perspec-
tive.

In the next section a new variant of the default ARTMAP will be proposed that is capable of
associating multiple ART networks with unsupervised learning. This new ARTMAP, called
the Multi-directional ARTMAP (MdARTMAP), has more similarities with the biological as-
sociative processes described earlier. Also analogies between the hierarchical structure of
this multi-modal sensor fusion architecture and the hierarchical structure of the MTL can be
found.

3.4.3 Multi-directional (Un-)Supervised ARTMAP

ART networks have proven themselves to be useful as an unsupervised learning mecha-
nism when ongoing learning is needed because they don’t suffer from the stability-plasticity
dilemma. And because ART is also used as a model to describe cognitive memory processes,
it seems very suitable for the low level building blocks of the cognitive sensor fusion archi-
tecture. This sensor fusion architecture will consist of a hierarchy of ART networks which
are linked by associative learning.

Multi-directional association

Associating the outputs of all the ART networks is done in a single associative network
called the map field (figure 3.27). This network can associate multiple supervised and un-
supervised ART networks. The difference with the default ARTMAP is the possibility to
have one-to-many and many-to-many mappings in the associative network. The match-
tracking process in the default ARTMAP only allows a match-tracking process for one net-
work, ARTa, and only accepts the ART class that was already associated with this ”class
label”. With that match-track process it is not possible to have an input pattern that belongs
to multiple ”class labels”, which is possible in reality. For example a single sound pattern
can be created by different objects, and thus must be associated to multiple classes.

The MdARTMAP is able to use supervised learning with match-tracking, but it also allows
the binding of one ART class to multiple ART classes of another ART network. One-to-many
mappings inmultiple directions is made possible through distributedwinner selection using
multiple ART network classes. When input patterns are presented to all the ART networks,
their output classes, which are connected to map field neurons, activate the associated neu-
rons in the map field (associative network) (see equation (3.7)). The associative neuron with
the highest activation value (see equation (3.8)) is selected as winner.
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Figure 3.27: An abstract representation of the MdARTMAP network. This MdARTMAP
consists of three ART networks ARTa, ARTb and ARTc. The output classes of each ART
network are associated in the map field F3. A match tracking process can be initiated by
one of the highest ranked ART networks when the output of a lower ranked ART network is
inconsistent with the expected output calculated by the higher rankedART network through
map field F3.

Map Field node activation function:

Act(X) = |W | +

|W |
∑

i

wi

|ARTnetworks|
(3.7)

where W is a vector with all active connections to map field node X

and the normalized connection strength wi ǫ [0, 1]

Map Field winning node selection:

winning node = arg max
X

(Act(X)) (3.8)

where X ǫ Map Field nodes

The activation value of a map field neuron depends on the number of connections and
the strength of these connections to associated classes. The connection strength is learned
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through hebbian learning. When a map field neuron is activated by at least two classes
then the connection strength from the neuron to the classes is increased. Classes that are
often perceived together have a high connection strength, but a connection with a high con-
nection strength can never give a higher activation value than two connections with a low
strength. This means that the number of ART networks that vote for a certain associative
neuron weighs more than the strength of the association of a certain ART network class.
This weight function ensures that very often perceived classes will not automatically lead to
one ”output class”. If a system only encounters red robots that make a certain sound and
”give” energy, the system will have a high connection strength for red robots and the ”give
energy” property. If a red robot is encountered that makes a different sound a new associa-
tion will be made based on the findings whether this robot gives energy or not. If it learns
that this robot does not give energy, seeing a red robot with that different sound activates the
later learned association, based on the number of connections and not on the high connec-
tion strength of the red robots class to the neuron that is associated with the ”gives energy”
class. Therefore the map field is updated based on the following rules:

i f Act ( winning node ) >= |ART networks | then
increase strength of active connections W to winning node

else i f ( Act ( winning node ) >= 2) and ( Act ( winning node ) >= |W| ) then
connect ART classes to winning node and increase connection strength of W

else
create a new map field node and connect it to all ART output classes

(Un)-Supervised Learning

The ARTMAP is created to steer the clustering processes when training examples are avail-
able. But since the ARTMAP is based on the ART network, which is known for its unsuper-
vised learning capabilities, it is also suitable for unsupervised learning. The hardest part of
unsupervised learning with an ART network is finding the right vigilance parameter. Find-
ing this parameter is an iterative empirical process where the trade-off between generalizing
and abstracting has to be made. Such a process could be of evolutionary nature, but using
knowledge about the future data could also give satisfying results.

Information from modalities differ in resolution, variance and thus in reliability. To cope
with this the vigilance parameter can be tuned, but this only works to a certain extent. With
knowledge about the reliability of the information sources / modalities, the individual ART
networks in theMdARTMAP can be ranked and are able to steer each other’s search process.
When using a high resolution camera and a low quality microphone, conflicting predictions
made based on information from those modalities will be in favour of the camera.

Match-tracking for reliability ranked ART networks is only activated when there is a mis-
match between the outputs of the ART networks. This mismatch occurs when the outputs
of the ART networks both have associations to other output classes than the currently acti-
vated ones. The most reliable networkwill then initiate thematch-track process for the other
network(s). A newmatch will eventually be found, this could either be the output class that
was already associated with the output of the supervisor network(s), or a new output class
could be created and also associated with the output of the supervisor network(s). Because
no initial zero vigilance is used, the match-track process does not force a specific outcome.
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By adding a reliability measure to each ART network both supervised and unsupervised
clustering can be obtained.

When the MdARTMAP consists of equally ranked ART networks then match-tracking is not
used. Associations are made based on the classifications of the unsupervised ART networks.
A well tuned vigilance parameter and a distributed winner selection method are important
for this unsupervised process. The conditions needed to initiate match tracking are:

• Unequal ranked networks

• Highest ranked ART networks activate the same map field neuron X

• Lower ranked ART network does not activate map field neuron X

The association process

The association of ART network classes focusses on simultaneous perceptions and retrieving
missing perceptions based on learned associations. In the following part a detailed descrip-
tion of the (un)-supervised association process will be given for multiple ART networks.

Based on the outputs of the ART networks, called ART classes, associations are learned using
the following steps:

1. For each ART class calculate the activation of associated map field nodes

2. If no map node is activated, then associate the ART classes to a new map field node

3. If all the ART classes activated the same node then update W of the winning node X

4. If all ART classes activated X except the new connectionless ART classes then:

(a) Associate the new ART classes to X if X has no associations with those ART networks
and update W

(b) Otherwise create a new map node and associate all the ART classes

5. If not all ART classes activate X then:

(a) Create a new map node and associate all ART classes if:

• All networks are equally ranked.

• Or the highest ranked ART networks (supervisors) do not all activate X

(b) Match-track all lower ranked ART networks if all supervisors activate X

i. Update the connections W if all ART classes activate X

ii. Associate new ART classes to X

Retrieving associated data is done using a distributed winner selection method. When for
instance two of three ART classes are given as input, the third class is retrieved based on the
learned associations. As in the learning process a winning map field node is selected based
on the number of connections and secondly the connection strength. This winning map field
node activates the ART class with the strongest connection from the ART network that was
selected for retrieval.
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3.4.4 Distributed Clustering

ART networks are known for dealing with the stability-plasticity dilemma but also for their
lack of handling certain invariances. The classification algorithm of the used Fuzzy ART
network performs a one to one comparison of the input vector with the stored memory
nodes. Any shifts in the input pattern will lead to a wrong classification. Also partially
observed patterns can not be classified. This puts a high constraint on ART for using it in
real-time where ongoing classification is needed. For example when recognizing sound in
a dynamic environment (real world), partly observed and shifted sound samples are often
encountered.

To overcome these problems a distributed approach is usedwhere features are clustered that
are shift invariant. In this approach an ART network is used to recognize the features of a
class which are all associated to that class via the previous described ARTMAP.

The features (F ) that represent the class must of course be as descriptive and invariant as
possible. Each feature can belong to multiple classes, and each class has multiple features.
To be able to classify a set of orderless features a distributed winner selection method based
on all the features is used for the MdARTMAP. Based on all the features there could either
be a positive classification in which the class is known in memory, or there could be no clas-
sification in which a new object is encountered. Learning new patterns with this distributed
clustering network (DCN) is done by first performing a test whether a set of features will
lead to a reliable classification. If a class is found then all features are given as input to the
ARTMAP subsequently togetherwith the associated class. The connection strengths to asso-
ciated features are then increased and connections to the class are created for new features.

The distributed winner selection method does not calculate the winning map field node,
but the associated winning ART class which is the ”class label” for the input pattern (see
equation (3.11)). This is done because multiple map field nodes are connected to one ART
class. The activation value of the winning ART class (see equation (3.9)) is used to determine
the probability whether this class belongs to the input pattern (see equation (3.10)). The
probability is measured by dividing the activation value of the winning class by the total
amount of class activations. This probability value will only be accepted if the amount of
associated features is above a threshold which is dependent on the number of input features.

Act(class, F ) =

n
∑

i=1

(wi) (3.9)

where {w1, ..., wn} ǫ ConEdge(activeNodes, class)

activeNodes ǫ ConNode(F, MapNodes)

P (class|F ) =
Act(class, F )

n
∑

i=1

Act(classi, F )

(3.10)

winning class = arg max
class

(P (class|F )) (3.11)
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With this distributed classification method not only shift invariant but also sets of features
can be classified. When classifying a temporal pattern each point in time can be used as
separate feature for the feature set. The DCN does not learn the order of features in a set.
Therefore in order to classify a pattern for which the sequence is important (e.g. audio)
preprocessing is required.

3.4.5 Hierarchical Associations

With the previous described DCN it is now easy to see that a hierarchy of associations can
be formed when combined with the MdARTMAP (figure 3.28). The Fuzzy networks used in
the MdARTMAP can be replaced by DCNs, which will extend the MdARTMAP to be able
to classify shift invariant and temporal patterns. This can be realized by using the output
from the DCN, which is an ART class, as input for the MdARTMAP. For computation time
and complexity only the winning ART class of the DCN is used for the associations, instead
of a distributed output based on the activations. In figure 3.28 a hierarchical MdARTMAP
is shown. In this figure the ART networks ARTa and ARTb from figure 3.27 are replaced by
two individual MdARTMAPs with each two ART networks. Each MdARTMAP has a map
field in which features from ARTx1 are associated to a higher class in ARTx. These higher
classes (from ARTa, ARTb, ARTc) are subsequently associated in the map field of the main
MdARTMAP.

3.4.6 Conclusion

In this section a new type of ARTMAP was proposed which is capable of creating multi-
directional supervised and unsupervised associations. By extending it with a distributed
clustering network it is capable of classifying temporal patterns as well as being able to
handle more invariances than former ARTMAPs. The hierarchical structure of this network
resembles the structure of the medial temporal lobe in the human brain, and the mushroom-
bodies in the Dorsophila nervous system. Analogue to those systems distributed uni-modal
encoding of features is done with a limited degree of invariance to the feature patterns,
followed by the association of the more abstract uni-modal percepts into a multi-modal con-
cept. In the next sections the implementation of the distributed clustering network for sound
and object recognition will be described.
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Figure 3.28: An abstract representation of the sensor fusion architecture using a hierarchy
of combined MdARTMAP networks. This MdARTMAP consist of a ART network and two
MdARTMAPs which each consist of two ART networks. The first MdARTMAP consists of
ARTa1 and ARTa and the second MdARTMAP of ARTb and ARTb1. The output values of
ARTa, ARTb and ARTc are all associated in the map field MF with connections W.
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3.5 Sound Recognition

One of the modalities used in cognitive sensor fusion is sound. When an interesting sound
source is detected using the earlier described bi-modal attention system, sound patterns
must be learned to be able to distinguish objects based on the sound they emit. To be able to
learn and recognize sound in a un-constraint real-time setting, a robust un-supervised sound
recognition method with ongoing learning is needed. In this section such a sound recogni-
tion method will be proposed. First the preprocessing phase with the use of reservoir com-
puting will be described followed by a description of an un-supervised sound recognition
system build with the previous described MdARTMAP.

3.5.1 Reservoir Computing

The Echo State Network (ESN) is one of the well known recurrent neural networks (RNN)
used in reservoir computing. RNNs have the ability tomodel highly non-linear systems, and
are capable of processing temporal information. The hard part of using RNNs is training the
network. Three different types of RNNs have been described to overcome this problem, Echo
State Networks [29], Liquid StateMachines (LSMs) [39], and Back propagation Decorrelation
(BPDC) [49]. With reservoir computing a randomly connected RNN is used as a reservoir
that is not trained but read out by a simple classification layer. The reservoir has the function
of a kernel, that is: projecting the input to a higher-dimensional space in which it is better
separable. The advantage of a reservoir in comparison to kernel-based methods (e.g. SVM)
is the ability to incorporate temporal information.

Figure 3.29: General reservoir computing architecture. The following connectionweight vec-

tors are labelled in the figure W
inp
res : input to reservoir, W inp

out : input to output, W res
res : reservoir

to reservoir, W bias
res : a bias value to the reservoir, W res

out : reservoir to output, W out
res : output to

reservoir, W out
out : output to output, W bias

out : bias value to the output.

Reservoir computing has been successfully implemented in several application domains. It
has for example been used in dynamic pattern classification, tone generation, object track-
ing and prediction, reinforcement learning, and also Digital Signal Processing (DSP). For
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an overview read [46]. Because of its temporal processing capabilities, and successful im-
plementations in speech recognition [40, 47, 53], reservoir computing is chosen for pre-
processing the microphone sensor data to obtain better classification results.

3.5.2 General Reservoir Model

A generic reservoir computing architecture is shown in figure 3.29. During reservoir sim-
ulation the reservoir states and output states with teacher forcing are computed with the
following equations:

x(t + 1) = f(W res
res x(t) + W inp

res u(t) + W out
res y(t) + W bias

res ) (3.12)

ŷ(t + 1) = W res
out x(t + 1) + W

inp
out u(t) + W out

out y(t) + W bias
out , (3.13)

where x(t) is the reservoir neuron state vector for time step t, u(t) the input vector, f the neuron activation function, y(t) the

teacher input vector, and ŷ(t) the state of the output neurons.

All the connection weights are randomly generated using some kind of distribution of con-
nectivity and connection type, except for W res

out which are obtained through learning.

3.5.3 ESN vs. LSM

The primary goal for developing an LSM was to provide a biologically plausible paradigm
for computations in generic cortical microcircuits, while ESNs have been designed for high
performance engineering tasks. LSMs therefore consist of biologically inspired spiking neu-
rons with a small world interconnectivity pattern. Descriptions of ESNs can be found with
analogue neurons and several different interconnection structures. For implementing reser-
voir computing in the sensor fusion model, the most important aspect is the performance
in relation to computational complexity. Verstraeten et al. [52] compared reservoirs using
different node types, for a broad range of parameter settings and tasks. They concluded that
the computational cost of a spiking reservoir is higher but the performance was better on a
speech recognition task of isolated digit recognition. They also showed that the memory ca-
pacity of both, spiking and analogue, reservoirs increases monotonically with the size, and
found a strong dependence on the spectral radius for analogue neurons.

3.5.4 Implementation

Due to the computational constraints of the sensor fusion system, an ESN is used for pre-
processing audio data. The main architecture of the ESN follows the generic reservoir de-
sign. The parameters used for the reservoir are based on work of Jaeger [30] and Venayag-
amoorthy [51] for the general ESN working, Holzmann [24] and Verstraeten [53] for the
combination of an ESN with audio processing and recognition, and Morse and Ziemke for
the combination with associative memory and robotics [41].
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The connection weights are generated using a connectivity parameter. With a certain con-
nectivity the connections between the neurons are generated with weight values between -1
and 1. The reservoir and output neurons can be built from different types of neurons they
can be sigmoid or linear and can optionally be leaky integrator neurons. The state of a leaky
integrator reservoir neuron with leak rate α is calculated using the following equation:

x(t + 1) = f(αW res
res x(t) + W inp

res u(t) + W out
res y(t) + x(t) ∗ (1 − α)) (3.14)

The implemented state update equation is different from the generic update equation, be-
cause no teacher forcing and feedback connections are used when simulating the reservoir.
An important property of the reservoir is the spectral radius. The spectral radius is the
largest absolute value of the eigenvalues of the reservoir weight matrix. To obtain the echo
state property, the network must be on the edge of stability, this is obtained with a spectral
radius between 0 and 1. A spectral radius of 0.8 seems to give a good performance for a
variety of tasks [51]. The reservoir weights are first normalized using the largest eigenvalue
of the reservoir, and subsequently scaled using the desired spectral radius.

Sound processing

In order to classify complex sound patterns an ESN can be used to transfer the non-linear
separable sound patterns to a higher dimension in which it could be linearly separable. Ver-
straeten et al. [53] proved that cochlear filtered sound is a good representation to use for
sound recognition with an LSM. The cochlear data can be fed into the reservoir by aligning
the channels (frequencies) of the cochlear data to the input of the ESN. Each time step one
frame of the cochlear data is entered into the ESN, which changes the states of the reservoir
neurons that are connected to the input neurons. The state of other reservoir neurons that are
not connected to the input neurons are changed due to the recurrent connections, no teacher
input or feedback connections are used. Based on the states of all the neurons, patterns can
be recognized with a readout function.

Verstraeten et al. [53] successfully used an LSMwith cochlear filtered input data to recognize
isolated spoken digits. The conversion of analogue cochlear values to spike trains was done
using a filter encoding scheme (BSA). The best performance was obtained with a linear clas-
sifier as readout function. This showed that the LSMwas capable of transferring the cochlear
filtered data to a linearly separable representation. Previous studies [52] have shown that an
LSM performs better on temporal patterns than an ESN. Therefore experimentsmust be con-
ducted to determine whether an ESN is able to transfer the cochlear filtered data to a linearly
separable dimension. The experiments must also show to what extent an ESN can handle
noisy and partially observed input patterns. To only test the performance of the ESN a linear
classifier is used as readout function.

3.5.5 Experiment

To test the separability of the ESN, a speech recognition task is created using a dataset with
250 samples of 5 english vowels spoken by 50 different male speakers, taken from the Hille-
brand vowel dataset [23] . The words used are: ”hae”, ”her”, ”hih”, ”hoo”, ”huh”.
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A second task is created for testing the robustness of the network. In this recognition task
a spoken word needs to be recognized which is transformed with an effect. The network
is first trained with 9 spoken digits in Māori after which it needs to recognize different in-
stances of the spoken digit ”iwa”. The audio sample ”iwa” was edited and 11 different
versions were used for testing the robustness of the the network. The applied editions are:
reverberation (auditorium template), first half of the sample, last half of the sample, 150%
amplitude, 125% pitch, telephone and AM effect, flanger and chorus effect, highpass filter
(AM template), pink noise (SNR=-5.6), white noise (SNR=-0.5 DB), and ”iwa” spoken by a
female.
The audio samples are first filtered using the earlier described cochlear model [48], with dec-
imation factor 130, and step factor 0.25. The filtered audio is used as input for the reservoir,
using 84 input neurons, and a fixed sample size of 60. The ESN parameters used are shown
in table 3.1.

Table 3.1: Default parameters of the implemented ESN.

Default ESN parameters

input connectivity 0.1

reservoir connectivity 0.5

feedback connectivity 0.0

reservoir activation function tanh

output activation function linear

spectral radius 0.8

input shift 0.0

reservoir shift 0.0

feedback shift 0.0

input scale 1.0

reservoir scale 1.0

feedback scale 1.0

3.5.6 Classification

To test the performance of the reservoir, a linear classification method, ridge regression is
used. The weights of the readout neurons are calculated as followed:

W out = (R + α2I)−1P, (3.15)

where R = S′S is the correlation matrix of the extended reservoir states S = (X + U), α2 is the smoothing factor, I the

identity matrix, R−1 denotes the inverse of the matrix R, and P = S′D is the cross-correlation matrix of the states S and the

desired output D, which is obtained using Fisher labelling [3].

The actual classification is done using a linear projection of the input u(t) and reservoir states
x(t) to the output y(t) using weightsw:

y(t) = w · s(t) (3.16)

The winning class is selected using winner-take-all (WTA) selection, by taking the maximum
value of the output y(t) over time. The classification performance was also tested using a

45



Chapter 3

winning class selection that computed the winner over a predefined amount of samples, and
a final class selection using WTA. But the performance of this method for several samples
sizes was not better than when computing the winning class over all the samples.

3.5.7 Results and Conclusion

For testing the reservoir separability, several reservoir sizes where used while conducting
the speech recognition task with the 5 enlish vowels. The reservoir that had the best per-
formance was the one with size T/10 (T=sample size), which is in the range that Jaeger [30]
suggested. The average performance was a recognition of 96% on the training set and 95%
on the test set, with 10-fold cross validation. Considering the dataset the network perfor-
mance is average/good. Better results have been obtained using an LSM Verstraeten [53].
But considering the goal of the network: pre-processing with ”low” computational costs, an
ESN of 6 reservoir neurons is very suitable.

The robustness of the reservoir was tested by training the reservoir on every spoken digit
once, and testing it several times on the edited versions of the word ”iwa”. For this task
the best reservoir size was between between 300 and 400 neurons, which is more than the
suggested amount by Jaeger. The average score on the training set was 100% and on the
test set 65% (see table 3.2). The ESN was not always able to classify the word ”iwa” with
a pitch of 125%, or spoken by a female correctly. It seems that the reservoir is sensitive to
shifts between neurons in the input vector. It also did not recognize the version with white
noise correctly, and sometimes the pink noise version was mistaken for a word that looked
like it (”wha”) because of the noise. The ESN showed to be able to generalize and still have
great separable capabilities. But a problem encountered is the use of the ESN for different
tasks. Different tasks demand different reservoir sizes. A larger size is needed to be able
to recognize noisy samples, and smaller reservoirs are needed to generalize for inner class
variance.

Table 3.2: Classifications scores of the robustness sound classification task.

Results robustness

sample score

female iwa 0%

reverb 100%

1st half 99%

last half 97%

150% amp 100%

125% pitch 0%

telephone and AM 100%

flanger and chorus 100%

highpass filter 100%

pink noise 20%

white noise 0%
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3.5.8 The ART of Sound Recognition with Echo State Clustering

Sound recognition with an Echo State Network (ESN) was proven to be a suitable method
for off line sound classification. But to use an ESN for sound recognition on an autonomous
robot, unsupervised ongoing learning and classification is needed. A problem that is en-
countered with ongoing learning is the stability-plasticity dilemma. A method suitable for
dealing with this problem is the earlier described MdARTMAP.
Instead of using linear read-out neurons or a linear classifier for an ESN, pattern recognition
can be done by classifying each echo state with the Fuzzy ART network from the distributed
clustering method. For this cochlear filtered sound data is first transferred into echo states
which are then clustered separately and associated with the MdARTMAP.

Performance test for sound recognition with the MdARTMAP have been done for super-
vised and unsupervised learning. The difference with unsupervised learning is that the
learning phase does not incorporate the distributed test to find the most likely class. It as-
sociates all the found echo state ART classes to the given sound class label. The overall
performance of the system is very dependent of the parameters of the individual compo-
nents which are related to each other. The parameters (see table 3.3) as well as the randomly
generated reservoir topology are empirically determined.

Table 3.3: Parameters used for the echo state MdARTMAP sound recognition test.

Cochlear parameters

step factor 0.6

decimation factor 130

ESN parameters

input connectivity 0.2

input scale 3333

reservoir size 6.0

ART parameters

vigilance 0.97

class probability threshold 0.5

With the parameters of table 3.3 a recognition score of 89% was achieved on the spoken
word classification task, using a dataset with 250 samples of 5 english ”words” spoken by
50 different male speakers. The performance of the system with unsupervised classification
was 70%. For these tests 10-fold cross validation with the same reservoir topology was used.
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3.6 Visual Object Recognition

The second modality used in the cognitive sensor fusion architecture is vision. With sensor
fusion the concept of an object must be formed using visual and auditory information. Before
a visual object can be recognized it first has to be learned. Autonomously learning objects in
a complex dynamical environment will need some guidance if there is minimal interaction
with this environment and the objects in it. Getting to know an object in the real world is
normally done by interaction, this could be for instance by touching it, picking it up, or by
looking at it from different angles. This way all the different properties of the object can
be learned. By interacting with the object a better segmentation of its properties and the
properties of the surrounding can be established. When no interaction is possible with an
object active sensing can be used to explore an object’s visual properties. With active sensing
an object is observed from different angles to get a more complete visual representation of
an object. The current sensor fusion architecture will focus on the recognition of objects
in a single camera image, which can obviously be extended to an active sensing system
based on the control architecture. The first step in the object learning and recognition phase
is the detection and segmentation of an object from its surrounding. After an object has
been detected and extracted its characteristics are extracted, classified and associated to the
concept that represents that object.

In the next sections the phases for visual object recognition from a camera image will be de-
scribed. The first section will be about the detection and segmentation of an object, followed
by the feature extraction method. In the last part a method for clustering and associating
features will be described.

3.6.1 Detection and Segmentation

Extracting features and classifying each frame from a camera image is computationally ex-
pensive and biologically not realistic. An attentional system as described in previous sec-
tions is therefore needed to select relevant information for processing. This attentional sys-
tem does not only point out the location of a visual interesting object but also highlights the
most interesting parts via a saliency map. The saliency map points out a salient object which
is inherently separated from its background. The saliency map is therefore used as segmen-
tation method for objects in an image. The extracted salient location will be used for further
processing which will be described in the next section.

3.6.2 SIFT Feature Extraction

One commonly used algorithm to detect and extract distinctive features from a visual ob-
ject is Lowe’s Scale-invariant feature transform (SIFT) [37]. The features extracted with SIFT
are invariant to scale and rotation and partly invariant to illumination and 3D camera view-
point. The SIFT features, called key-points, are highly distinctive and only a few features
are needed to be able to recognize an object. Even when only a part of an image or object
is visible, SIFT is able to recognize the object when the number of matching features is at
least three. SIFT has proven to be a useful method for many image matching applications,
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to name a few, object recognition, robot localization and mapping, and 3D scene modelling.
Because of its robustness and accuracy it is chosen to fulfil the visual object feature extraction
task in the sensor fusion architecture.

The SIFT feature extracting process follows a cascading filtering approach, which means that
operations that are expensive are only applied to locations that pass a test. A set of image
features is created with the following process:

1. Scale-space extrema detection: First a Gaussian scale pyramid as described in section
3.1.1 is created to perform a Difference of Gaussian (DoG). To find interesting points
every pixel in the DoG is compared to its eight neighbours and to eighteen neighbours
in adjacent DoG levels.

2. Keypoint Localization: A detailed inspection is performed to see whether these in-
teresting locations, keypoints, are stable. Keypoints are rejected when they have low
contrast or are localized along an edge.

3. Orientation assignment: Based on local image gradient directions orientations are as-
signed to the keypoints. The keypoints are transformed relative to the scale and as-
signed orientations to make them invariant to these transformations.

4. Keypoint descriptor: A descriptor (figure 3.30) is computed for a local image region
with the size determined by the scale at which the keypoint was detected. It is com-
puted by calculating the gradient magnitude and orientation in the sub-regions of the
region.

Figure 3.30: On the left the first step for computing the keypoint descriptor is shown. From
the subregions around the keypoint the gradient magnitude and orientation are computed.
The 2x2 subregions on the right contain orientation histograms which is a summation of the
inner-subregions (taken from [37]).

3.6.3 The ART of 3D Object Recognition with SIFT Keypoint Clustering

Object recognition with SIFT is often done by matching the extracted keypoints to all the
keypoints in a database using nearest neighbour classification. All the keypoints extracted
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from learned images are stored in the database. With a typical image of 500x500 pixels
2000 stable keypoints can be detected (dependent on the parameters and image content).
These databases are therefore very large which leads to long search times and much storage
consumption. To overcome these problems clustering of keypoints can be used to reduce
the database size. Kootstra [35] showed that keypoint clustering can indeed be used to re-
duce the database size. The only drawback in Kootstra’s implementation was the stability-
plasticity dilemma. With the MdARTMAP keypoint clustering as well as matching can be
performed without suffering from the stability-plasticity dilemma.

As with the echo states, individual keypoints are clustered and associated to a class based on
the probability obtained via a test match using all the keypoints. If the probability of a class
is high enough, then all the keypoints are associated to that class, else a new class is created
and all the keypoints are associated to that class. With this method similar keypoints from
different classes can be represented by a single cluster, which leads to a smaller database
size. The dimension of the used keypoint descriptor is 128. These 128 values are used as
input vector to the ART network. Due to the high dimensional input vector small changes
in the vigilance parameter have a large effect on the amount of clusters that will be created.
This effect is slightly minimized by first normalizing the input vector. Based on the SIFT
parameters for keypoint filtering a vigilance parameter can be obtained empirically.

3.7 Summary

In this chapter the cognitive sensor fusion architecture consisting of a bi-modal attention
and multi-modal sensor fusion module was described. The basis of the bi-modal attention
module is a visual saliency detection system called SISCA. SISCA is an optimized version
of the visual saliency detection systems of Itti et al. [28]. SISCA includes speed and per-
formance optimizations through respectively a faster feature computation and an extended
map suppressionmethod. For auditory attention salient auditory features are extracted from
a cochleogram through top-down cueingwith SISCA. Based on salient audio the spatial loca-
tion of a sound source is determined via binaural-localization. The mapping of the binaural
cues to a spatial location is done by association the visual salient location of an object with
the auditory cue information through Hebbian learning.

The presented multi-modal sensor fusion module is based on the multi-modal sensor fusion
process found in the nervous system of a fruit-fly [55] and resembles the process found in
the human medial temporal lobe [44]. The self-organizing associative processes found in
these biological systems is the basis for the sensor fusion module. For the implementation
of the associative memory a new type of ARTMAP called the Multi-directional ARTMAP
(MdARTMAP)was presented. TheMdARTMAP is based on the Default ARTMAP [6] and is
extended with the possibility to have many-to-many associations, associated node retrieval
in any direction, and un-supervised learning. The multi-modal sensor fusion module is
created with a hierarchy of MdARTMAPs which enables shift invariant pattern recognition
for the separate modalities through distributed clustering.

To use the proposed multi-modal sensor fusion module for the recognition and fusion of
audio-visual information, feature extraction methods for these modalities have been pre-
sented. For the recognition of sound, features are extracted by processing cochlear filtered
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audio with an echo state network (ESN). The ESN transforms input to a higher dimension
(feature space) which makes the recognition easier (linear separable). The echo states ob-
tained from this process are clustered and associated using ”distributed clustering” in the
MdARTMAP. With ”distributed clustering” all the echo states from one audio sample are
clustered and associated separately to the same ”audio class”. The ”audio class” is de-
termined by calculating the probability whether this set of states belongs to a previously
encountered ”audio class” or not. If an ”audio class” is found that has a high enough prob-
ability to belong to the echo states then all the states are associated to this class, otherwise a
new ”audio class” is created to which the echo states are associated. Experiments conducted
with an ESN in combination with an MdARTMAP showed that it is a suitable method for
un-supervised and on-going learning of sound.

For the recognition and fusion of visual objects with an MdARTMAP, SIFT [37] is used for
image feature extraction. The features are extracted from the salient regions computed with
SISCA. For object recognition these SIFT features, called keypoint descriptors, are clustered
with anMdARTMAP using ”distributed clustering”. This means that each keypoint derived
from the same object (region in an image) is clustered and associated separately to the same
”object class”. This ”object class” is determined by calculating the probability whether this
set of keypoints belongs to a previously encountered ”object class” or not.
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Experiments

The previously proposed cognitive sensor fusion architecture is designed for modular micro
robots (Replicators) [17] which are currently in development. To test the cognitive sensor
fusion architecture the 3D simulator Symbricator (figure 4.1) is used. The whole cognitive
sensor fusion architecture together with a simple control architecture are implemented in
this simulator in C/C++. Different aspects of the implemented cognitive sensor fusion sys-
tem are tested by conducing several experiments. In this chapter the experiments will be
described.

Figure 4.1: Symbricator3D interface. On the left there is the GUI with a birds eye view of
the robots. In the middle and top right corner the camera view of the robot and the SIFT
keypoints are displayed. A cochleogram with a saliency map is displayed below the center,
and in the bottom right corner the salient region of the camera image displayed.
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4.1 Simulator Implementation

The Symbricator3D simulator (figure 4.1) developed for the Replicators and Symbrion project
is based on the open source gaming/simulation engine Delta3D [1]. This simulator consists
of a 3D graphics toolkit: OpenSceneGraph; a physics engine: ODE; a skeletal animation:
Cal3D; and a multichannel 3D positional audio library: OpenAL.

4.1.1 Robot

The robots used in the simulator have a cubical form and use two screw drives to translocate.
They have unisex docking mechanism on four sides and a colour LED on top (see figure 4.2).
The simulated sensors with which they are equipped are:

• Color Camera

• Depth camera

• Distance sensors

• Laser scanner

• Light sensor

• Stereo microphone

Figure 4.2: The simulated robot viewed from the front.

4.1.2 Implementation

To conduct the experiments the robot must be able to perform actions based on its percep-
tions and goals. For this a simple subsumption control architecture is used. This control
architecture consists of:

1. Wander

2. Goal tracking

3. Obstacle avoidance

4. Docking

5. Object learning

1 Wander

On the lowest level of the control architecture is a wander module. This wander module lets
the robot drive through the environment with some randomness. It controls the robot by
setting a speed value for the two screw drives.
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2 Goal tracking

The goal tracking module controls themain actions of the robot. With goal tracking the robot
needs to go to interesting objects that are known or unknown to the robot.

2.1 Bi-modal saliency Goal tracking is done by first performing bi-modal saliency detec-
tion on the camera image and on a sound recording of 0.5 seconds from the microphone. If
both modalities have salient data, then based on the predicted spatial locations of the visual
object and sound source a classification is performed.

2.2 Perception alignment If both modalities perceive an object from the same location then
both percepts are used as input to classify the same object. Otherwise each modality is used
separately to predict the perceived object.

2.3 Target selection The robot only changes its heading to a percept if it is classified as the
goal or as unknown. Objects in front of the robot have a higher priority and goal objects
have the highest priority.

2.4 Motor control To be able to drive to a salient object the robot first learns to center a
salient object in a reinforcement learning task. In this task a mapping is learned between
the spatial location (state) and the direct effect of the speed values for the motors (action).
The weight value between the motor values and the spatial location is increased if the speed
value brought the salient location closer to the center of the camera image (goal), otherwise
it is decreased.

3 Obstacle avoidance

Using its distance sensors the robot is able to avoid obstacles that are not classified as un-
known or as goal objects. These distance sensors are simulated sonar sensors. The robot
turns away from an obstacle when the distance is below a certain threshold.

4 Docking

The docking action is used to determine the energy properties of an object. This action
is initiated when the robot is closely in front of a goal or unknown object. This docking
mechanism is simulated and will return the value ”no energy property” if it is not able to
dock.

5 Object learning

The robot learns the properties of an object through association after it has performed the
docking action. It associates the visual and auditory representation together with the energy
property of the perceived object.
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4.2 Scenario

A scenario which will be used to test cognitive sensor fusion is visual-acoustic object recog-
nition. This scenario will be tested using the 3D simulator Symbricator (figure 4.1). In this
scenario the robot must be able to distinguish other robots from other objects based on low
quality sound and camera images. The robot first learns to associate different sounds and
objects by driving through the scene (self-learning). By using cognitive sensor fusion with
different modalities the robot must be able to detect objects earlier, and recognize objects
better. If the robot is searching for a particular object, then if it hears a sound, it has to know
what object, in the sense of the object’s properties (e.g. visual representation), are associated
with it.

4.3 Task Description

There are two important search tasks that the micro robots must be able to perform, these
are: finding other robots to dock to and exchange energy with, and finding power outlets to
power up. The robots are equipped with a docking mechanism with which they can dock
to power outlets or others to obtain or exchange energy. The performance of the cognitive
sensor fusion module will be determined by measuring how well a search task is done in
terms of successful trials and classification errors. The first task is to find energy, this can be
a power outlet or another robot that also has energy. Robots that are running out of energy
can be distinguished from robots that do have energy by the sound that they make. Robots
that are almost out of energy make a beeping sound and switch of their red light, all other
robots emit sound which is created physically through their motor and screw drive.

4.4 Experiment Setup

While the robot performs its search task it simultaneously learns: what objects are in the
room, what kind of sound do they make, and whether the objects give, need, or don’t use
energy (through the docking mechanism). While the robot drives through the room it learns
the objects that it encounters based on the usedmodalities (vision and sound). The robot also
stores the energy property that an object has, this can be: ”energy sink”, ”energy source”, or
”no energy property”. A room will consist of a power outlet and one other robot that needs
energy from time to time.

The robot starts with the task to power up. It tries to find power outlets or robots that have
power. Once it has obtained power it wanders around and if it notices a robot without
energy it tries to provide the empty robot with energy. When this succeeds the robot notices
that the other robot has energy and proceeds its search. The other robot is always stationary
even after it received energy. After a while the energy of both robots drop below a threshold.
This happens for both robots at the same time. The stationary robot will thenmake a beeping
sound, while the other robot tries to look for an energy source. Looking for an energy source
can take as long as the duration of the experiment.
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4.4.1 Conditions

In the experiment several properties will be tested. The added value of the sensor fusion
module, and in particular the use of sound as second modality, is tested by performing the
search tasks with and without audio. It is expected that without audio the time needed to
find the other robot will increase, and also decrease the recognition performance. To de-
termine the added value of the attention system, a condition is used in which the saliency
module is not used (lesion experiment). The expected result is that it will take more time to
find an energy source or sink when there is no attention mechanism. To test these properties
four experiments are conducted with different conditions. Each experiment is conducted at
least ten times for each condition and each experiment condition lasts thirty minutes.

During the experiments the amount of times the following actions are performed is counted:

1. Obtained energy from an outlet

2. Gave energy to the other robot

3. Try to give energy to a wrong (misclassified) object

4. Try to obtain energy from a wrong (misclassified) object

Experiment 1: Binaural-Localization

The added value of binaural-localization to the attention module is tested by using a large
partly observable room (figure 4.3). The room consist of three parts, which all contain an
outlet (figure 4.4). Two search task are performed, one with auditory and visual input, and
one with visual input only. Because the other robot is not always visible, the added value of
the binaural-localization module can be measured.

Figure 4.3: The room setup for experiment 1. In this
figure (a) indicates the location of the empty robot, (b),
(c), and (d) indicate the location of the outlets.

Figure 4.4: A picture of the outlet
used in the experiment.
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Experiment 2: Sensor Fusion

To test the sensor fusion architecture for its pattern recognition capabilities a single fully
observable room with one outlet and robot is used as experiment environment (figure 4.5).
In this task the emphasis does not lie on the searching performance but on making the right
choice based on the classification. This task is also performed with two conditions, one time
with auditory and visual input and one time with only visual input. In both cases the robot
should be able to find the outlet and the other robot easily.

Figure 4.5: The room setup for experiment 2. In this figure (a) indicates the location of the
empty robot and (b) location of the outlet.

Experiment 3: Sensor Fusion with Visual Distraction

A third experiment is used to test howwell the sensor fusion system performs when there is
another object in the room with visual distracting features. To test this an object (figure 4.7)
was placed on the wall in the room (figure 4.6). This experiment was also conducted with
two conditions, with auditory and visual information and with only visual information. For
this experiment the amount of times the robot obtains and gives energy is measured together
with the amount of times the robot goes to the distracting object.

Figure 4.6: The room setup for experiment 3. In this
figure (a) indicates the location of the empty robot, (b)
location of the outlet, and (c) the location of the distract-
ing object.

Figure 4.7: A picture of the dis-
tracting object.
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Experiment 4: Bi-modal Attention

The added value of the attention module is tested by performing an experiment with and
without the attentional mechanism. This is done by skipping the bi-modal saliency detection
module, this causes the system to classify each camera image or sound sample. For this the
same setup as in experiment 2 is used.
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Results

5.1 Results of Experiment 1: Binaural Localization

In experiment 1 as described in section 4.4.1 binaural localization is tested by conducting
an experiment where the robot needs to obtain energy and give it to another robot in a large
environment. For this experiment a condition is usedwhere auditory and visual information
is used and a condition with only auditory information. The results are shown in table 5.1
and figure 5.1. In the table and figure the measured actions are indicated as outlet energy
for the retrieval of energy from an outlet, gave energy for giving another robot energy, gave
no energy when the robot tried to give energy to a wrong object, and got no energy when
the robot tried to obtain energy from a wrong object. From the results it can be seen that
the condition where both modalities are used scored higher on all the measured actions,
inclusive on the wrong type of actions caused by false classifications. The significance of the
difference between the actions is tested using a two-tailed Student’s T-test with significance
value a = 0.05 and null hypothesis: using audio as second modality does not have an effect
on the measured property. Using audio did not lead to a significant difference in finding
an outlet (p = 0.35 > 0.05), nor to a significant difference in trying to obtain energy from a
wrong object (p = 0.08 > 0.05). A significant difference was found in finding and providing
the other robot with energy (p = 0.04 < 0.05) and trying to give a wrong object energy
(p = 0.04 < 0.05).

Table 5.1: Results for experiment 1: Binaural Localization.

conditions outlet energy gave energy got no energy gave no energy
Image & Audio µ = 1.18 σ = 1.07 µ = 0.65 σ = 0.79 µ = 0.71 σ = 1.53 µ = 0.47 σ = 0.87

Image µ = 0.82 σ = 1.07 µ = 0.18 σ = 0.39 µ = 0 σ = 0 µ = 0 σ = 0
H0: no difference p = 0.35 p = 0.04 p = 0.08 p = 0.04
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Figure 5.1: Results of experiment 1: Binaural Localization. The graphs show the results
for using both visual and auditory information and for using only visual information. (a)
shows the amount of times the robot powered up at the outlet. (b) shows the amount of
times energy was given to the other robot. (c) shows the amount of times the robot tried to
obtain energy from a wrong object. (d) shows the amount of times the robot tried to give
energy to a wrong object.
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5.2 Results of Experiment 2: Sensor Fusion

The performance of the sensor fusion system was tested as described in section 4.4.1 by
using a smaller single room. The results are shown in table 5.2 and figure 5.2. Also in this
experiment the condition where both modalities are used scored higher on all the measured
actions. The statistical significance of these differences is tested with a two-tailed Student’t
T-test with significance value a = 0.05 and null hypothesis: using audio as second modality
does not have an effect on the measured property. A significant difference was measured for
both the amount of times the outlet was found (p = 0.01 < 0.05) and the amount of times the
robot was found and provided with energy (p = 0.01 < 0.05). No significant difference was
found in the amount of misclassifications of objects where the robot tried to obtain energy
from (p = 0.53 > 0.05) or give energy to (p = 0.34 > 0.05).

Table 5.2: Results for experiment 2: Sensor Fusion.

conditions outlet energy gave energy got no energy gave no energy
Image & Audio µ = 3 σ = 0.94 µ = 2.2 σ = 1.14 µ = 0.6 σ = 0.7 µ = 0.1 σ = 0.32

Image µ = 1.3 σ = 1.57 µ = 0.8 σ = 0.92 µ = 0.4 σ = 0.7 µ = 0 σ = 0
H0: no difference p = 0.01 p = 0.01 p = 0.53 p = 0.34
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Figure 5.2: Results of experiment 2: Sensor Fusion. The graphs show the results for using
both visual and auditory information and for using only visual information. (a) shows the
amount of times the robot powered up at the outlet. (b) shows the amount of times energy
was given to the other robot. (c) shows the amount of times the robot tried to obtain energy
from a wrong object. (d) shows the amount of times the robot tried to give energy to a wrong
object.
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5.3 Results of Experiment 3: Sensor Fusion with Visual Distraction

Another test was conducted to test the robustness of the sensor fusion system as described
in section 4.4.1. Table 5.3 and figure 5.3 show the results of this experiment. From the results
it is clear to see that the condition in which both sound and visual information is used has
a higher value for obtaining and providing energy, and a lower value for the amount of
times the distracting object was visited. With a two-tailed Student T-test the significance of
these differences is tested with significance value a = 0.05, and the null hypothesis: that the
addition of audio as second modality does not have an effect on the measured properties.
A significant difference was measured for all the values, the amount of times the outlet was
found (p = 0.03 < 0.05), the amount of times the other robot was provided with energy (p =
0.03 < 0.05), and the amount of times the distracting object was visited (p = 0.01 < 0.05).

Table 5.3: Results for experiment 3: Sensor Fusion with Visual Distraction.

conditions outlet energy gave energy distracting obj
Image & Audio µ = 2.45 σ = 1.04 µ = 1.09 σ = 1.3 µ = 1.73 σ = 0.65

Image µ = 1.45 σ = 1.04 µ = 0.09 σ = 0.3 µ = 4 σ = 2.41
H0: no difference p = 0.03 p = 0.03 p = 0.01
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Figure 5.3: Results of experiment 3: Sensor Fusion with visual distraction. The graphs show
the results for using both visual and auditory information and for using only visual infor-
mation. (a) shows the amount of times the robot powered up at the outlet. (b) shows the
amount of times energy was given to the other robot. (c) shows the amount of times the
robot went to the distracting object.
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5.4 Results of Experiment 4: Bi-modal Attention

The added value of the bi-modal attention module for the sensor fusion architecture is also
tested as described in section 4.4.1. The same setup as with experiment 2 was used, but now
without using the bi-modal attention module. The results of this condition are compared
to the results of the experiment 2. The results of the experiment and a comparison with
experiment 2 are shown in table 5.4 and figure 5.4. Again using a two-tailed Student’s T-
test with significance value a = 0.05 the significance of the difference is measured with
null hypothesis: the addition of bi-modal attention module does not have an effect on the
measured values. The Student’s T-test showed that with the use of bi-modal attention the
amount of times the robot got to the outlet is significantly higher (p < 0.01 < 0.05), and the
amount of times the robot provided the other robot with energy is higher (p < 0.01 < 0.05).
A significant difference in the amount of misclassifications was not found.

Table 5.4: Results for experiment 4: Bi-modal Attention.

conditions outlet energy gave energy got no energy gave no energy
With attention µ = 3 σ = 0.94 µ = 2.2 σ = 1.14 µ = 0.6 σ = 0.7 µ = 0.1 σ = 0.32

Without attention µ = 0.5 σ = 0.71 µ = 0 σ = 0 µ = 1.6 σ = 1.26 µ = 0 σ = 0
H0: no difference p < 0.01 p < 0.01 p = 0.05 p = 0.34
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Figure 5.4: Results of experiment 4: Bi-modal Attention. The graphs show the results for
the sensor fusion experiment with the use of the attention module and without the attention
module. (a) shows the amount of times the robot powered up at the outlet. (b) shows the
amount of times energy was given to the other robot. (c) shows the amount of times the
robot tried to obtain energy from a wrong object. (d) shows the amount of times the robot
tried to give energy to a wrong object.
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Discussion

6.1 Summary of the Results

In the first experiment the added value of the binaural-localization method was tested. An
environment which consisted of three rooms was used so that the robot needed to search
for its goal. The results showed that the addition of audio, used for binaural-localization,
had a positive effect on the search task. As expected the addition of audio only had an effect
on finding the robot, which emits sound, and not on finding the outlet which does not emit
sound. Because the robot was drawn more often to the sound emitting robot the number
of times it tried to give energy to that robot while it was no empty is also higher. From the
results it can be concluded that the binaural-localization method has an added value to the
cognitive sensor fusion architecture when it comes to finding an object that emits sound. To
see whether sound as second modality only helps in finding the other robot or also results
in better classifications results, a second experiment was conducted.

In the second experiment the sensor fusion systemwas tested by conducting the experiment
in a smaller room where the robot did not need to search for its goal but merely make a
good classification of the perceived objects. The results from this experiment show that
with the addition of audio the other robot was more often successfully classified and given
energy. Also the amount of times energy was obtained from the outlet was higher with the
addition of audio. The reason why energy was also obtained more times is due the fact
that when energy is given the robot’s own energy is lowered, and therefore has to search
for energy again. Another possible reason was observed during the experiments. When
the robot perceived a salient object it could classify the object based on sound on a larger
distance than with visual information, and when an object is classified earlier the robot loses
less time on an uninteresting object.

In the third experiment a visual distracting object was added to the setup of the second
experiment to test the robustness of the sensor fusion system. In this experiment the amount
of times the robot went to the distracting object was counted instead of the amount of times
it wanted to give or obtain energy from a wrongly classified object. The results from this
experiment show that with the addition of audio the robot obtained energy more times,
gave energy more times, and went fewer times to the distracting object than with vision as
only modality. These results show even clearer than the second experiment that the early
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classification based on audio causes the robot to stay focussed on its goal instead of being
distracted by even more salient objects.

The fourth experiment was conducted to see whether the saliency detection module was
actually needed or that the robot could perform the task with all information equally salient.
From the results of this experiment it can be concluded that the robot was not able to perform
its task without the saliency detection module. One of the reasons for this result could be
due to the fact that the robot is only able to classify objects from a certain distance. When no
saliency detection module is used the robot has no need to drive to an object and will only
make a successful classification when it happens to end up in-front of an object. Another
aspect that could play a role in this result is the possible bad representation of a system
without an attentional mechanism. Because the saliency detection module was an integral
part of the sensor fusion system, leaving this module out could give a worse performance
than a different sensor fusion system that was built not to have an attentional mechanism at
all.

6.2 Conclusion

In this thesis a biologically inspired cognitive sensor fusion architecture was presented for
the micro-robots developed in the Replicator project [17]. The goal for this architecture was
to obtain environmental awareness through self-organization. By using several modalities
these robots need to be able to detect and recognize interesting objects in the environment.
However due to the limited processing capabilities of the individual micro robots, sensor
information has to be processed efficiently. To find an efficient way for sensor processing,
biological systems are examined for their sensor fusion capabilities. This has led to the de-
velopment of a biologically inspired cognitive sensor fusion architecture which consists of a
bi-modal attention module and multi-modal self-organizing associative memory.

State of the art visual saliency detection mechanisms [33] [18] were altered and combined
with biologically based sensor processing and fusion methods [55] [25] to obtain the bi-
modal attention module. The bi-modal attention module consists of audio-visual saliency
detection with binaural-localization.

For the sensor fusion module a new type of ARTMAP (self-organizing associative memory)
called theMulti-directional ARTMAP (MdARTMAP)was developed. This ARTMAP is used
in a hierarchical manner to obtain shift invariant pattern recognition through distributed
clustering. The MdARTMAP was used to cluster states from an echo state network (ESN)
which used cochlear filtered audio as input in order to recognize sounds. Experiments con-
ducted to test the sound recognition module showed that this new method is very suitable
for un-supervised on-going learning of sound. Object recognition was obtained by cluster-
ing and associating SIFT keypoint descriptors with an MdARTMAP. A multi-modal sensor
fusion module was eventually created by associating the MdARTMAPs of the auditory and
visual object recognizers with a higher level MdARTMAP.

Experiments were conducted to test the performance of the cognitive sensor fusion system
and its parts. The robot with its cognitive sensor fusion architecture was implemented in a
3D simulator in which the experiments where conducted. The results showed that the robot
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was able to successfully perform search tasks with the cognitive sensor fusion architecture.
The robot performed significantly better on its tasks when fusing auditory and visual infor-
mation than when only visual information was available. A significant better performance
was also found when the bi-modal attention module was used than when only multi-modal
sensor fusion was used.

With these results an answer is given to the earlier presented research question:

How can biologically inspired sensor fusion be used in an embodied self-organizing micro-system to
increase environmental awareness?

The self-organizing process that underlies the associative memory, which is used as basis for
multi-modal sensor fusion, has shown to be useful for on-going learning. The associative
network was able to successfully re-associate learned features to multiple ”classes” when a
change occurred in the environment (e.g. the association of features to a ”has energy” robot
class and the partly re-association of features to the ”empty robot” class).

6.3 Future Work

The presented cognitive sensor fusion architecture is designed formodular micro-robots that
can operate individually but also as a large organism consisting of multiple micro-robots. To
be able to operate as one organism sensor information from all the micro-robots need to be
shared, processed and fused. Further research needs to be conducted to find out what kind
of changes need to be made to use this architecture for distributed cognitive sensor fusion.

Concerning the computational complexity of the system, an increase in the speed perfor-
mance can be gained on at least one computationally demanding module, visual object
recognition. The implemented SIFT module is for its good recognition performance and
source code availability chosen as image feature extraction method. But a significant speed
performance gain can be obtained when keypoints in SIFT are not searched for with the
expensive scale-space extrema detection method of SIFT (see section 3.7.2) but instead are pro-
vided by the saliency detection module SISCA (see section 3.1).
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