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“I may not have gone where I intended to go, but
I think I have ended up where I needed to be.”

Douglas Adams, The Long Dark Tea-Time of the Soul, 1988



Abstract

The indoor localisation problem, in smart spaces, is more than just finding the where-
abouts of users. Finding positions of users relative to the devices of a smart space is even
more important. Unfortunately, configuring such systems manually is a tedious process,
requires expert knowledge and is not resilient to changes in the environment.

We propose a new system, called Simultaneous Localisation and Configuration (SLAC ),
to address these two challenges, locating the user and the devices, and combine them
into a single estimation problem. The SLAC algorithm, which is based on FastSLAM, is
able to locate devices using the received signal strength indicator (RSSI) of devices and
motion data from users.

Simulations have been used to show two main effects on the localisation performance:
the amount of RSSI updates and the location of devices in the space. Live tests, in non-
trivial environments, showed that we can achieve room level accuracy and that the
localisation can be performed in real time. This is all done locally, i.e. running on a
user’s device, with respect for privacy and without using any prior information of the
environment or device locations.

More work is required to increase accuracy in larger environments and to make the
algorithm more robust for environment noise caused by walls and other objects. Existing
techniques, such as map fusing, could alleviate these problems.



Preface

This thesis was written as a completion of a Master’s degree in Artificial Intelligence
at the Radboud University. As part of this project I did an internship at Almende and
DoBots, two research-focussed companies located in Rotterdam.

The problem of indoor localisation was first presented to me by Anne van Rossum,
who was my external supervisor. At the very early stages of the project Anne said to
me: “Smart buildings are the hype, but it is of importance to make them truly smart”.
This set the tone of the project: we need intelligent solutions with a good theoretical
basis. My (re)gained knowledge in the field of mathematics should be mainly credited
to Anne. I want to thank Anne for his guidance during the project.

In April of last year I asked Pim Haselager, my internal supervisor, whether he had
any ideas about interesting companies for my internship. That first email was the start
of this project. From that point on Pim’s most important contribution to this project
was the thing he does best: asking difficult questions. “How would we apply this to...?
How is this relevant for...?” It wasn’t uncommon for Pim to compare the project to the
localisation mechanism of owls or even fictional nobleman such as Baron Munchausen.
I want to thank Pim for all these questions and support. His statement “your thesis
should hurt a little” is something I will probably never forget.

Besides my two supervisors there is a long list of people to thank, which includes:
everyone at Almende and DoBots who gave feedback and helped with the live tests,
Panagiotis Chatzichristodoulou for finding a very critical bug in my code and the nu-
merous discussions, my parents for their continuous support at every stage, Robert-Jan
Drenth for our frequent update talks, Ida Sprinkhuizen-Kuyper for accepting to be the
second assessor, Rotterdam Community Solutions for granting me access to their office,
the porter of the Spinoza building for letting me roam the basement on a Saturday,
Bart Dekker for proofreading and everyone with whom I discussed my project and gave
feedback. Without their support this project wouldn’t be where it is now.

Wouter Bulten
August 11, 2015

i



Contents

Preface i

Contents ii

List of Figures v

List of Tables vi

List of Algorithms vii

1 Introduction 1
1.1 Potential & challenges of smart spaces . . . . . . . . . . . . . . . . . . . . 2
1.2 Self-* properties & ProHeal . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Indoor localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Requirements for indoor localisation . . . . . . . . . . . . . . . . . . . . . 4
1.5 Overview & Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background & Related work 7
2.1 Range & Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Localisation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Locating nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Locating users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Locating users & nodes simulteanously . . . . . . . . . . . . . . . . 11

3 SLAC 13
3.1 Source of input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 RSSI Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Motion measurements . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Mapping the SLAM problem to indoor localisation . . . . . . . . . . . . . 16
3.2.1 Pose sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Initialisation using Particle Filters . . . . . . . . . . . . . . . . . . 18
3.2.3 Refining using Extended Kalman Filters . . . . . . . . . . . . . . . 19
3.2.4 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Moving landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ii



Human SLAM CONTENTS

4 Implementation details & evaluation 25
4.1 Javascript implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Online recordings, offline evaluation . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Live tests at Almende . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Rotterdam Community Solutions . . . . . . . . . . . . . . . . . . . 29
4.3.3 Radboud University . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Results 32
5.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 Effect of movement noise . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.2 Effect of number of RSSI updates . . . . . . . . . . . . . . . . . . . 32
5.1.3 Difference between landmark locations . . . . . . . . . . . . . . . . 33

5.2 Live test: Almende . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Live test: Rotterdam CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 Live test Spinoza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Overview of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Discussion 40
6.1 Evaluation of requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Factors influencing performance . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3 Comparison to existing techniques . . . . . . . . . . . . . . . . . . . . . . 43
6.4 Improving performance with map fusing . . . . . . . . . . . . . . . . . . . 44
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography 46

A Particle Filters and FastSLAM 50
A.1 (Extended) Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.1.1 Non-linear functions . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.1.2 Updating the EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.2 Particle Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.2.1 Basic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.2.2 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.3 FastSLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.3.1 Algorithm in more detail . . . . . . . . . . . . . . . . . . . . . . . 55

B Random variables and distributions 58
B.1 Types of distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

B.1.1 Discrete probability distributions . . . . . . . . . . . . . . . . . . . 59
B.1.2 Continous probability distributions . . . . . . . . . . . . . . . . . . 59
B.1.3 Gaussian distribution . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.1.4 Joint probability distributions . . . . . . . . . . . . . . . . . . . . . 60

B.2 Stochastic (or random) process . . . . . . . . . . . . . . . . . . . . . . . . 60
B.2.1 Simple example: plant growth . . . . . . . . . . . . . . . . . . . . . 61

B.3 Relations between variables . . . . . . . . . . . . . . . . . . . . . . . . . . 62

iii



Human SLAM CONTENTS

C Gaussian Processes 63
C.1 Noisy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
C.2 Prediction using Gaussian processes . . . . . . . . . . . . . . . . . . . . . 64
C.3 Training a Gaussian process . . . . . . . . . . . . . . . . . . . . . . . . . . 66

C.3.1 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
C.3.2 Hyperparameter optimisation . . . . . . . . . . . . . . . . . . . . . 67

D Localisation using GP-LVM 68
D.1 Gaussian Process Latent Variable Models . . . . . . . . . . . . . . . . . . 69

D.1.1 Probabilistic principal component analysis . . . . . . . . . . . . . . 69
D.1.2 Non-linear LVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

D.2 GP-LVM for localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
D.2.1 Dynamics model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
D.2.2 Local distance preservation . . . . . . . . . . . . . . . . . . . . . . 72

D.3 Simulations of user-only localisation . . . . . . . . . . . . . . . . . . . . . 73
D.4 Problems with GP-LVM localisation . . . . . . . . . . . . . . . . . . . . . 73

iv



List of Figures

1.0.1 General project overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 RSSI measurements at fixed distances . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Overview of localisation algorithms . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 The effect of a Kalman filter on raw RSSI data . . . . . . . . . . . . . . . 15
3.2.1 Visualisation of a single step of the SLAC algorithm . . . . . . . . . . . . 18
3.2.2 Initialisation of landmarks using a particle filter . . . . . . . . . . . . . . 20

4.0.1 Screenshots of the SLAC application . . . . . . . . . . . . . . . . . . . . 25
4.1.1 Visualisation of the Javascript implementation . . . . . . . . . . . . . . . 26
4.1.2 Annotated creenshot of the SLAC application running on a tablet. . . . . 27
4.2.1 SLAC simulation screenshots at different stages . . . . . . . . . . . . . . 28
4.3.1 Evaluation at the Almende building . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Evaluation at the Rotterdam CS building . . . . . . . . . . . . . . . . . . 30
4.3.3 Evaluation at the Spinoza building . . . . . . . . . . . . . . . . . . . . . 31
4.3.4 Ground truth locations of devices in the Spinoza building. . . . . . . . . 31

5.1.1 Distribution of localisation errors in simulations . . . . . . . . . . . . . . 33
5.1.2 Localisation error for different RSSI update frequencies . . . . . . . . . . 34
5.1.3 Localisation error per landmark for different RSSI frequencies . . . . . . 35
5.2.1 Average localisation error of live tests at Almende . . . . . . . . . . . . . 36
5.3.1 Missing data in Rotterdam CS dataset . . . . . . . . . . . . . . . . . . . 37
5.3.2 Average localisation error of live tests at Rotterdam CS . . . . . . . . . . 37
5.4.1 Average localisation error of live tests at Spinoza building . . . . . . . . 38

6.4.1 Map fusing overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.3.1 Bayesian network representation of the FastSLAM algorithm . . . . . . . 55

B.2.1 Visualisation of plant growth model . . . . . . . . . . . . . . . . . . . . . 62

C.1.1 Example application of GP on two random datasets . . . . . . . . . . . . 65

D.2.1 Multi-modal distribution on the orientation between steps. . . . . . . . . 72
D.3.1 Ground truth for GP-LVM simulations . . . . . . . . . . . . . . . . . . . 73
D.3.2 GP-LVM & PCA Simulation results . . . . . . . . . . . . . . . . . . . . . 74

v



List of Tables

4.3.1 Description of all runs carried out at the Almende office. The step count
gives a rough indication of the length of each run. . . . . . . . . . . . . . 29

4.3.2 Description of all runs carried out at the Rotterdam CS office. The step
count gives a rough indication of the length of each run. . . . . . . . . . . 30

4.3.3 Description of all runs carried out at the Spinoza building. The step count
gives a rough indication of the length of each run. . . . . . . . . . . . . . 30

5.1.1 Results of Mauchly’s Test of Sphericity and the Greenhouse-Geisser cor-
rection that is applied for each condition for the repeated-measures-ANOVA. 34

5.1.2 Results of each repeated-measure-ANOVA conducted on the simulations
with noisy movement using landmark position as the within-subject factor. 35

5.5.1 Overview of simulations runs and live tests at Almende . . . . . . . . . . 38
5.5.2 Overview of live tests at Rotterdam CS building . . . . . . . . . . . . . . 39
5.5.3 Overview of live tests at the Spinoza building . . . . . . . . . . . . . . . . 39

vi



List of Algorithms

3.1 Algorithm for the pedometer . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Full SLAC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Algorithm for low variance sampling . . . . . . . . . . . . . . . . . . . . . 23
A.1 Extended Kalman filter algorithm. . . . . . . . . . . . . . . . . . . . . . . 52
A.2 Particle Filter algorithm. Input is the particle set χ, the control u, the

measurement z and the desired number of particles M . . . . . . . . . . . . 53
A.3 FastSLAM algorithm. Input is the particle set Y , the control u, the set

of measurements Z and the desired number of particles M . . . . . . . . . 56

vii



Chapter 1

Introduction

With advances in electronics and computer science, technology has become an indispens-
able part of our daily lives. A new field, where intelligent system have not (yet) been
fully integrated, is the work and living environment: our homes and offices. Although
these spaces are full of intelligent devices, there is often no link or collaboration between
intelligent devices and the environment we live in. The current development of the In-
ternet of Things (Atzori et al., 2010), which attempts to connect devices and, by doing
so, creating smart spaces, is about to change that. By connecting individual devices and
sensors we can build systems that as a whole interact with a user.

A key problem (or challenge) within these smart spaces is indoor localisation: making
estimates of users’ whereabouts. Without such information, systems are unable to react
on the presence of users or, sometimes even more important, their absence. This can
range from simply turning the lights on when someone enters a room to customising the
way devices interact with a specific user.

Even more important for a system to know where users exactly are, is to know where
users are relative to the devices it can control or use to sense the environment. This
relation between user and device location is an essential input to these systems. A central
question in this field is therefore:

What are the locations of devices in a smart space and what are
the current locations of users relative to these devices?

In this thesis we propose a new system, called SLAC : Simultaneous Localisation and
Configuration, to address the two challenges, locating the user and the devices, and
combine this into a single estimation problem. With SLAC we aim to simultaneously
locate both the user and the devices of a system deployed in an indoor environment.
To accomplish this goal we use characteristics that are already available in many smart
spaces: signal strength measurements (or RSSI ) from devices and motion data from
smart phones and other portable device (see also Figure 1.0.1). We will combine these
two inputs in a system that can locate users and devices, respect individual users’ pri-
vacy and perform all estimations in real time. SLAC is based on a common technique
from robotics, simultaneous localisation and mapping (SLAM), and in particular the
FastSLAM algorithm (Montemerlo et al., 2002).

1
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(1) (2) (3)
Figure 1.0.1: General project overview. In a building (1) a set of devices (grey dots) is installed (2)
with a user (red dot) that walks around (dashed line). Based on measured RSSI values and motion data
from the user we try to learn the location of devices in the building (3).

1.1 Potential & challenges of smart spaces

Smart spaces become more effective when there is a smooth interaction between users
and devices in a well-mapped environment. For homes these systems can result in more
comfort for residents and increase energy efficiency (Han and Lim, 2010; Batista et al.,
2013). For healthcare it can result in more tailored care, an increase in self-reliance
and a decrease in social isolation for patients and elderly (Chan et al., 2008; Stankovic
et al., 2005; Skubic et al., 2009). In a work environment, a smart office can improve work
efficiency and job satisfaction (Röcker, 2010) and reduce energy consumption (Choi et al.,
2015). In other words, in the full spectrum of our living environment, these smart spaces
can have great benefits. Not only for end users (residents, patients, etc.) but also for
organisations and other owners of such facilities. Especially in times where healthcare
costs continue to rise and energy consumption should be minimised, these systems can
offer a (partial) solution to these problems. In these cases we do however need to tread
carefully as to not infringe on users’ privacy.

Regardless of this potential, many challenges still exist which can slow down the
adoption of these systems in our environments. Users of smart spaces will, in general, be
non-experts that lack the technical skill to install and connect these complex systems.
This is not a great problem for large scale applications where specialists can install and
maintain systems. However, to make these systems available to general consumers the
installation, configuration and management of such systems should be easy. This is one
of the main issues that prevents our homes from becoming intelligent: it is too difficult
to set up and connect devices to create a collaborative system. Moreover, after these
systems have been set up the work is not done. Devices, including sensors, can be moved
by users to accommodate for changes in the environment or their condition. And even if
installation is carried out by specialists, due to this dynamic nature of our environments,
systems should adapt to changes themselves to prevent tedious (re)configuration steps
and prevent faults.

A second, not to be underestimated problem, is that of simply controlling devices
themselves. Elderly, patients in hospitals, children, all can have a reduced ability to
control or interact with devices or smart spaces in general. For office and home envi-
ronments the focus is on ease of use and efficiency. Direct and explicit interactions with
the smart space should be minimised to reduce cognitive load.

2



Human SLAM CHAPTER 1. INTRODUCTION

1.2 Self-* properties & ProHeal

Given the challenges of deploying a smart space, in an ideal world, a smart space should
be a self-managing system. It should automatically adapt to changes, configure itself and
run autonomously. More precisely, the system should support a list of self-* properties
(Sterrit and Bustard, 2003a,b; Warriach et al., 2014) which have the goal to minimise
human intervention. These properties range from automatic configuration of the systems
to adapting to changes in the environment and the presence of users.

Such a self-managing system introduces an interesting trade-off: from the systems’
perspective there is a need for information and user input. Generally, the more (and the
better) the user input, the higher the performance of the system. From the perspective
of the user the opposite is true: especially in terms of enjoyment and ease of use, we
want to minimise the load requested by the system.

The concept of a self-managing system is key in the ProHeal project1 which is funded
by the Information Technology for European Advancement (ITEA2) research programme
and is part of the Ageing society & wellbeing challenge. ProHeal runs from January 2014
till July 2016. Through the DevLab2 consortium, Almende participates in this project.
The goal of the ProHeal project is as follows (Gijssel and Stam, 2014):

“Autonomic systems have so-called self-managing properties, like self-
configuration, self-optimization, and in particular self-protection and self-
healing. There is an increasing demand on these self-managing properties
for many software systems deployed in dynamically changing environments,
such as smart buildings, healthcare systems, disaster management, etc. Such
systems must be able to easily adapt at runtime in response to changes in
their user preferences, requirements, computing infrastructure and surround-
ing physical environment. For this reason, these systems must be flexible,
fault-tolerant, configurable and secure.

[..] The expected impact will be a significant reduction in development
and maintenance costs of systems and service management organisations as
well as a mitigation of risks associated with shutting down and restarting
the system for adapting it. Moreover, since the systems-to-be will adapt
autonomously, user satisfaction and experience will be greatly improved.”

Retrieved from the ProHeal Project Outline Annex, p.4

1.3 Indoor localisation

In this thesis we focus on a subset of self-* properties in the context of indoor localisation.
More specific, we try to minimise the time users need to invest in configuration and
managing the network of devices in smart spaces.

When a system knows the location of a user it can react on its presence (or on its
absence). When the current location can be computed a system can, generally, also
derive where the user has been and make assumptions (interpolate) where the user will
be in the future. So, in the field of smart spaces, a central question is:

1https://itea3.org/project/pro-heal.html
2https://www.devlab.nl/

3
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What is the current location of a user?

In outdoor environments localisation of users is straightforward by using systems
such as GPS. GPS results in an absolute position of a user: regardless of the user, each
GPS device can compute its location in a globally consistent coordinate system (e.g.
using latitude, longitude and elevation). In indoor environments localisation using GPS
(or comparable measures) is often inaccurate or not feasible as signals have difficulties
penetrating walls of buildings and the resolution is too low.

Fortunately, for most systems in spaces, an absolute and global coordinate system is
not required. The position of a user expressed in latitude and longitude is not particular
useful, we are more interested in the room or section of a building the user is in. In other
words, a system needs to know what the location of a user is relative to the environment
and the devices therein. In many applications a rough measure of “close to”, with
precision in meters, is sufficient. This relative localisation does however introduce a
second question:

What are the locations of the devices that the system can use or
control?

By estimating both the locations of the devices of the system and users we can
compute distances, determine whether two ‘things’3 are close and track paths of users.

Note that this implies more than just the distance between a user and a single device.
Relative to the building we want to derive a map on which we can locate users and devices
simultaneously. A simple scenario highlights this difference: consider a user entering a
hallway. Here we do not only want to turn on the lights close to the user, but all (and
only) the lights in the whole hallway.

In a smart space, devices can have various roles; e.g. an actuator (controlling some-
thing or being an output device, e.g. a lamp), a sensor (measuring some environment
value, e.g. light intensity) or a combination of both. These roles are, however, not of
direct importance for the localisation algorithm. So, from now on we do not focus any-
more on the role of a specific device. We assume that there is a set of devices for which
it is required that we have a location estimate.

1.4 Requirements for indoor localisation

Besides accuracy, i.e. minimising the localisation error, there are also additional require-
ments for an indoor localisation system. While there are many of these requirements,
we will discuss three which are, in our opinion, the most important.

First of all, localisation should be preferably online and should give real time results;
i.e. the position of a user must be computed in real time and updated when a user
moves. Systems that derive users’ paths afterwards in an offline phase are generally not
suitable for smart spaces as a system cannot directly act on a change of user’s location.
Localisation of devices in a smart space does not necessarily share this requirement as
their positions will change less frequently (e.g. a light or a fridge will not move every
day).

A second requirement is that of privacy. There are many possible approaches for
tracking a user through a building but there is a large risk of infringing on users’ privacy,

3This can be a user and a device but also two components or two users.
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especially when these methods are used in (semi) public spaces such as hospitals or
government buildings. A system that is not privacy-aware can hinder the adoption of
such a system by end users. The risk is highest when using cameras or the localisation
algorithm is centralised and users’ locations are tracked and stored in a central system.
In an ideal system we would only use input that is privacy-aware and perform the
localisation decentralised. By, for example, performing localisation locally on users’
devices we can give them more control over their data.

The last constraint is linked to the use of additional hardware. Localisation of users
can be done quite reliably when additional sensors are used such as camera’s, sonar
sensors or specific devices that users have to carry. Also, the mapping of buildings
is feasible using (expensive) laser scanners. However, to make sure that a localisation
system is easily deployable to existing buildings and usable by users we favour a solution
that requires as little additional hardware as possible. We can, for example, utilise
characteristics from the devices we want to locate and use portable devices from users;
e.g. almost all users will carry a mobile phone which, if used, removes the need for a
application-dependent device that the user needs to keep.

1.5 Overview & Research Questions

In this thesis we address the problem of indoor localisation and focus especially on finding
the location of devices within smart spaces. We attempt to answer the following main
research question:

Is it possible, in principle, to design a fully autonomous self-localisation
system for a network of devices by utilising the users of the space
that the network is deployed in? And, if so, what level of accuracy
can we achieve, measured in meters?

In addition to this main research question we will address three subquestions:

1. To which degree can we satisfy our three main requirements, online localisation,
respecting privacy and using no additional hardware, and how does this influence
the overall accuracy of the system?

2. To what extent does the added information, generated by moving users, remove
the need for prior location information, i.e. can we achieve full autonomous self-
localisation without prior information or configuration regarding the location of
devices?

3. How does the localisation error (in meters) of the system depend on the location
of devices in the space?

In the next chapter we will first review related work regarding indoor localisation
and describe the environment and sources of input we can use. Then, in Chapter 3
we will introduce the SLAC algorithm with which we try to answer our main research
question. SLAC builds upon the FastSLAM robotics localisation algorithm which base,
for the unacquainted reader is explained in Appendix A. The SLAC algorithm is privacy-
aware and is an online localisation method; i.e. localisation starts whenever a user starts
moving inside a building. Moreover, we focus on a solution that can be deployed in
smart spaces without additional hardware requirements.
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We will then explain the specific implementation and the simulations and live tests
that have been carried out to asses the performance of our system in Chapter 4. The re-
sults of these tests are explained in Chapter 5. We conclude this thesis with a discussion
of our research questions and the results in Chapter 6. We will show that room-level
accuracy is indeed possible and that localisation of devices can be done very fast while
fulfilling our requirements of privacy, online computation and using no additional hard-
ware.

Additionally, four appendices are added to this thesis. Appendix A shows an overview
of the techniques that form the basis of SLAC, including particle filters, (extended)
Kalman filters and FastSLAM. In Appendix B we show a general overview of some
mathematical basics that have been used in our thesis, especially regarding random
variables and distributions.

At the start of this project a pilot was conducted using a different technique than
eventually used in the SLAC algorithm. In Appendix C and D we explain the theory
behind these techniques, which are Gaussian Processes and Gaussian Process Latent
Variable Models. After the pilot we favoured the FastSLAM approach; the rationale
behind this decision is further explained in the next chapter.
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Chapter 2

Background & Related work

Indoor localisation algorithms that try to locate system components and users are usually
related to some form of a Wireless Sensor Network (WSN). In its most basic version, a
WSN is a group of sensors (often called ‘nodes’) that can communicate with each other
or with some other entity wirelessly. If we consider every device in a smart space to be
a node we can apply a broad range of techniques and literature focussing on WSNs to
our indoor localisation problem.

In this chapter we will give an overview of different types of localisation methods
regarding WSNs. While it is infeasible to show all possible directions an attempt has
been made to give a broad overview of the directions one can take when trying to locate
nodes inside a network.

2.1 Range & Environment

Nodes in a WSN communicate with each other and with external systems through some
wireless system such as ZigBee, Bluetooth or WiFi. This communication layer comes with
a ‘free’ input that is often used in localisation: the received signal strength indicator
(RSSI). The RSSI value resembles the power of a received radio signal (measured in
dBm). The higher the RSSI value, the higher the signal strength.

The rationale behind using RSSI values is that almost all wireless systems report
and use this value natively; i.e. no additional sensors are required to measure RSSI
values. It can therefore be considered as a free input to a system. Moreover, and this
is specifically interesting for localisation, there is a relation between RSSI and distance
which can be roughly described using some form of the Log-distance path loss model
(Seidel and Rappaport, 1992; Patri and Rath, 2013):

RSSI = −10n log10(
d

d0
) +A (2.1.1)

with d the relative distance between transceiver and recipient, n the signal propagation
exponent and A0 a referenced RSSI value at d0. Usually d0 is taken to be 1 such that
A0 becomes the single strength measured at a distance of 1 meter of the node.

Following Equation 2.1.1, in a ideal world, the RSSI value is only dependent on the
distance between the two nodes. In reality, however, RSSI values are heavily influenced
by the environment and have, consequently, high levels of noise. This noise is, for exam-
ple, caused by multi-path reflections: signals bounce against objects in the environment

7



Human SLAM CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.1.1: RSSI measurements over time. The received signal strength of a device is clearly influ-
enced by distance but the amount of noise is substantial. For this plot, a bluetooth device was set up as
a beacon to continuously broadcast its unique identifier. Another bluetooth device was placed at various
distances from the beacon and acted as a recording device. With a 1Hz sample rate RSSI values were
sampled. For the ‘room’ case, the beacon was placed in an adjacent room to show the effect of walls.

such as walls. An example of the effect of noise and distance on RSSI values is shown
in Figure 2.1.1.

2.2 Localisation algorithms

The literature regarding localisation and WSNs is broad. A convenient way to categorise
existing indoor localisation techniques is by examining what exactly they attempt to
locate. Roughly three approaches can be distinguished: 1) locating nodes; 2) locating
users; 3) and localising both.

2.2.1 Locating nodes

Localisation algorithms that focus on localising nodes can utilise so called anchor nodes;
algorithms that do not use any anchors are termed anchor-free.

Anchor-node driven algorithms assume that a subset of nodes from the network have
knowledge about their true position. By using these anchor nodes as a base the other
nodes are ‘anchored’ on the global coordinate frame and it is often possible to position
nodes absolutely. The anchor-based localisation problem of devices in a WSN can be
formally described as:

Anchor-based localisation problem: Given a network N consisting of
nodes n. Each ni has a coordinate vector ci ∈ Rd with d ∈ {2, 3} which

8
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Localisation
 Algorithms

Localisation
 of nodes

Localisation
 of users

Localisation
 of users

 and nodes

Anchor basedAnchor free

Static anchors,
 mobile nodes

Mobile anchors,
 mobile nodes

Fingerprinting Dimensionality 
 reduction

SLACSLAM

Static anchors,
 static nodes

Mobile anchors,
 static nodes

Figure 2.2.1: Overview of localisation algorithms. The most basic division is based on what the
algorithms try to localise: users, nodes or both. There can be some overlap between the categories
when users are considered as moving nodes. Light grey boxes are example localisation techniques for
that specific category. SLAC is an example of an algorithm that tries to locate both users and nodes
simultaneously.

are unknown to the node themselves. A subset L ⊂ N does know their
coordinates ci and are considered anchors.

What are the coordinates of all nodes ni ∈ (N − L) given anchors L?

The main benefit of anchor-based localisation is that, given enough anchors, the problem
is solvable. Anchor based localisation algorithms roughly come in four categories (Han
et al., 2013):

1. Static anchors, static nodes: The most simple setup, all nodes are static. Examples
of this are Ekberg and Ngai (2011) who use swarm localisation, Li and Kunz (2007)
who use a version of non-linear dimensionality reduction and the particle swarm
optimisation approach by Chuang and Wu (2008).

2. Static anchors, mobile nodes: Anchor nodes are static and do not move and mobile
nodes try to find their location. See for example Rabbat and Nowak (2004). These
algorithms can also be used to track humans when they are considered a moving
node.

3. Mobile anchors, static nodes: Mobile anchors are often in environments where
many anchors are infeasible or the distance between nodes is high. E.g. a single
mobile anchor equipped with GPS can localise many static nodes by driving around
(Sreenath et al., 2007).

4. Mobiel anchors, mobile nodes: All nodes are mobile, e.g. applicable to robot
swarms where only a few robots know their true positions. See for example the work
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by Sheu et al. (2010) or the Monte-Carlo localisation approach by Hu and Evans
(2004) or Baggio and Langendoen (2008) who show that mobility can improve
performance.

By using anchors a reliable estimate of device locations can be made but this requires
us to have prior information about the network. Given our attempt to eliminate all prior
information, anchor-based approaches are not useful for solving our indoor localisation
problem.

Anchor-free localisation algorithms come closer to our desired solution. These al-
gorithms do not assume that nodes contain any information about their true position.
This is particularly useful for situations where exact location information is infeasible;
e.g. in remote areas or because of cost restrictions. Instead, anchor-free localisation al-
gorithms use measurements to find a consistent (relative) map; e.g. using triangulation.
The problem can be defined as:

Anchor-free localisation problem: Given a network N consisting of
nodes n. Each ni has a coordinate vector ci ∈ Rd with d ∈ {2, 3} which
are unknown to the node themselves.

What are the coordinates of all nodes ni ∈ N?

The problem with anchor-free localisation is that it is almost impossible to do this
localisation without using additional sensors or input. There are many factors that influ-
ence the (measured) signal strength1 and without directional information it is impossible
to deduce the true network topology.

In other words, if we do not want te resort to using anchor nodes some other input
is required. Here users of smart spaces come into play.

2.2.2 Locating users

Apart from algorithms that primarily focus on localising nodes, there are many examples
of algorithms that focus solely on locating users or some other mobile entity. When
a WSN is used for the localisation nodes are often used more implicitly and less as
active participants of the algorithm; for example by defining a unique fingerprint of an
environment.

The localisation of users can be defined in two ways: online and offline. In the offline
method a users’ path is derived at the end. The online method continuously updates
the estimate of the users’ position.

Localisation of users: Given a user u whose location at time t is described
by a vector lt = {xt, yt}.
Offline localisation: What are the locations of the user between t = 0 and
t = N?
Online localisation: Given the users previous positions l0:N what is the cur-
rent position lN+1?

An often used and also intuitive method to localise users is fingerprinting. At runtime
or before deployment a ‘fingerprint’ of the environment is created, this can for example

1E.g. nodes can be perceived as being far away while in reality a wall is blocking the signal.
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be a signal strength map. When a user needs to be located, the user matches its current
fingerprint with a stored fingerprint database and can retrieve its location. Creating
fingerprints of the building can be crowdsourced to reduce human intervention (Yang
et al., 2012).

Ferris et al. (2007) were the first to use Gaussian Process Latent Variable Models
(GP-LVM ) for localisation which is an offline example of user localisation method. A
combination of a motion model and a signal strength map of WiFi access points was used
to reconstruct a user’s trace. GP-LVM uses dimensionality reduction to map a higher
dimensional space (the signal strength map) to a lower dimensional space (a x, y-map of
the user trace). GP-LVM has also been used to locate robots in an indoor environment
(Hollinger and Djugash, 2008).

The GP-LVM based localisation technique uses no additional sensors and can be used
with existing hardware. This solution came close to matching all of our requirements.
We therefore carried out a pilot study to investigate the benefits and possible drawbacks
of this technique. An elaborate description and discussion can be found in Appendix
D. Eventually we opted to not use GP-LVM for SLAC as its main benefit, a relatively
good accuracy without prior information, did not outweigh two important drawbacks:
the method only supports offline estimation and has, in its base version, no functionality
for locating devices. Though, these estimates of device locations are a valuable input for
systems in smart spaces. This last problem has been addressed by Hollinger et al. (2011)
but they use additional hardware to be able to make predictions of node positions which
increases the cost of using such a system and cannot be deployed without changing the
environment (by adding additional sensors).

2.2.3 Locating users & nodes simulteanously

The third and last category, and the one we are interested in primarily, is that of localising
users and nodes simultaneously. We already described that locating devices without
additional information is hard. By combining information from both devices and users
this can potentially be overcome.

The double localisation problem of locating both devices and users can be defined
(again in two versions: offline and online) as:

Double localisation problem: Given a user u whose location at time t is
described by a vector lt = {xt, yt} and a network N consisting of nodes n
with coordinates cn ∈ Rd with d ∈ {2, 3} which are unknown to the nodes
themselves.

Offline localisation: What are the locations of the user between t = 0 and
t = N and the locations of all nodes n ∈ N?
Online localisation: Given the users previous positions l0:N what is the cur-
rent position of the user tN+1 and the current estimate of all nodes n ∈ N?

There are multiple approaches to the double localisation problem, one of them using
GP-LVM (Hollinger et al., 2011) as we described before.

Another field where this double localisation problem is an active topic of research
is the field of robotics. Robots that are deployed in unknown environments have to
simultaneously locate themselves, and map the environment in which they move. This
is called the Simultaneous localisation and mapping (or in short SLAM ) problem.
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The estimation of the map and robot position is based on sensor readings and the
controls (i.e. actions) the robot performed. The combination of both sensor readings and
controls is important as the world is non-deterministic and the same control can result in
a different result. The difficulty of SLAM is mainly caused by a problem which, at first
sight, looks like a chicken-and-egg problem: a map is required for estimating a position,
but for the mapping an estimate of the robot pose is required. SLAM overcomes this
problem by estimating both at the same time.

SLAM is often centred around the observation of landmarks: distinguishable objects
or markers in an environment that a robot can observe. These landmarks can be implicit,
like walls, or more explicit such as (sensor) nodes and devices. Especially because of the
use of devices as landmarks, SLAM can be used to locate the positions of devices in a
WSN. Examples are the WiFI GraphSLAM algorithm of Huang et al. (2011) who use
WiFi access points nodes or Menegatti et al. (2010) who use cameras to further refine
node location estimations.

As the problem of SLAM fits our problem of indoor localisation nicely we opted to
use a version of SLAM as the base of our algorithm. While there are many versions
of SLAM algorithms, SLAC builds upon FastSLAM (Montemerlo et al., 2002) which is
based on particle filters. FastSLAM is an online localisation method and has already
been applied to WSNs. For example, Sun et al. (2009) use range measurements to map
sensors in an environment. In the next chapter we will further look at the specific use
of FastSLAM.
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Chapter 3

SLAC: Simultaneous localisation
and configuration

The SLAC system proposed in thesis builds upon a well-known technique from robotics:
Simultaneous localisation and mapping (or in short SLAM ). The SLAM problem is
defined as follows:

Given a robot’s controls and sensor readings what is the current estimated
location of the robot and map of the environment?

The key difficulty of this problem is that a map is required for estimating a position
while for the mapping an estimate of the robot pose is required; SLAM solves this by
estimating both at the same time.

Until now we used the general term ‘device’ to indicate some object of our smart
space that we want to locate. In our application there is also another type of device: the
device carried by the user. To make a clear distinction between the two we will, from
now on, use the general term ’landmark’ for the devices we want to locate. This term is
often used in the SLAM literature for a feature of the environment that is used to build
the map.

While there are many versions of SLAM, SLAC builds upon FastSLAM (Montemerlo
et al., 2002) which is an online SLAM algorithm that uses particle filters (and Rao-
Blackwellized particle filters in particular) to do the state estimation. Individual devices,
i.e. the landmarks, are represented by extended Kalman filters (EKF).

In this chapter we focus on the definition of the SLAC algorithm and how we map
the robotics problem to the domain of indoor localisation. Notation wise we follow
the definitions as defined by Thrun, Burgard, and Fox (2005). A basic understanding
of particle filters and extend Kalman filters is assumed. For the uninformed reader,
Appendix A contains a general overview of the theory behind these techniques.

We start with a description of the input and which transformations have to be applied
before these source of input can be used. Then we will explain each individual component
of the system, ranging from estimating positions to finding locations of devices. Last we
will address the time complexity of the algorithm and look at a few specific situations,
including devices that are moved.
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3.1 Source of input

FastSLAM requires two types of input: measurements or predictions of motion to make
pose estimations and environment data to resample particles and to build the map
(in our case, finding locations of devices). In our application, signal strength (RSSI)
measurements are used to determine distances to devices. Pose estimations are made
using inertial measurement unit (IMU) data. Before these measurements can be used
as inputs they first need to be preprocessed.

3.1.1 RSSI Filtering

As shown in the previous chapters, especially in Figure 2.1.1, the raw RSSI signal con-
tains noise. To filter out large spikes while trying to retain distance information a
(regular) Kalman Filter is used to filter incoming signal strength measurements. We
assume static landmarks to simplify the filter. The true RSSI value (without noise) is
defined as the state we want to estimate. Our transition and observation model can then
be reduced to:

xt = Atxt−1 +Btut + εt

= xt−1 + εt (3.1.1)

zt = Ctxt + δt

= xt + δt (3.1.2)

where εt and δt describe Gaussian noise and At, Bt and Ct our transition models. At
and Ct are set to identity matrices as we assume the state is static (i.e. xt = xt−1) and
we directly model the state (i.e. we assume xt = zt). Because there is no control, Bt is
set to zero. The prediction step of the Kalman filter then becomes:

µ̄t = µt−1 (3.1.3)

Σ̄t = Σt−1 +Rt (3.1.4)

where Rt is the process noise and is typically set to a small value (e.g. 0.008). Because
we model RSSI directly our measurement vector is a scalar value set to 1, this gives us
the following reduced Kalman gain:

Kt = Σ̄t(Σ̄tQt)
−1 (3.1.5)

The measurement noise Qt is set to the variance of the RSSI measurements. The
state can then be updated using the Kalman gain:

µt = µ̄t +Kt(zt − µ̄t) (3.1.6)

Σt = Σ̄t − (KtΣ̄t) (3.1.7)

The result of the Kalman filter on a sample of raw RSSI data can be seen in Figure
3.1.1. The Kalman filter is able to remove a large part of the noise from the data, but
as a tradeoff, has to give up a bit of the responsiveness.
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Figure 3.1.1: The effect of a Kalman filter on raw RSSI data sampled from a static device (i.e. no
movement at both the receiver or transmitter end). The Kalman filter removes a large part of the noise
from the signal.

3.1.2 Motion measurements

The second input is focussed on modelling motion. Two sensors are used to measure
the motion of users: an accelerometer and a compass. These two sensors are present in
almost any modern mobile device (including phones, tablets and wearables).

The compass returns the current rotation or heading relative to the global north; this
does not require any processing and can be used directly as an input. Accelerometers
return acceleration in three axes, x, y, z, and need to be processed to make estimations
about the distance that is travelled.

The acceleration is used as the input for a pedometer. The pedometer counts steps
which can then be converted to distance. Our pedometer is based on a design by Zhao
(2010) and Ménigot (2014) and uses a sliding window of the acceleration data to deter-
mine whether a step has been made.

First, to make the pedometer rotation independent, the norm of the acceleration
vector is computed. This makes sure that it does not matter how the devices is orientated
(which can differ a lot, e.g. the differences between holding a tablet and a phone inside
a pocket). Noise is removed using a regular Kalman filter. A new step is detected if the
data satisfies the follow constraints (see also Algorithm 3.1):

1. The difference between the maximum and minimum acceleration in the time win-
dow must exceed the sensitivity. The sensitivity is defined as double the normalised
acceleration variance.

2. The current acceleration must exceed the average acceleration in the time window.
The previous acceleration must be below this average to ensure a single step is not
counted twice.

3. The previous slot in the time window should not be a step. This ensures that a
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Algorithm 3.1 Single step of the pedometer. Input is the acceleration in x, y and z (in
m/s2), current time step t, a sliding window V containing the norms of the acceleration
of the previous steps and a binary array S keeping track of previous steps. The function
returns 1 if a step has been detected and 0 otherwise.

1: function Pedometer(x, y, z, t, V, S)

2: Calculate norm ||v|| =
√
x2 + y2 + z2

3: Filter ||v|| using Kalman filter
4: Remove first value of V , add ||v|| to V

5: accmax = max(V )
6: accmin = min(V )
7: accthreshold = accmax+accmin

2
8: Compute sensitivity accs

9: if (accmax − accmin) > accs then
10: if Vt ≥ accthreshold and Vt−1 < accthreshold then
11: if St−1 == 0 then
12: S = S + [1]
13: return {1, S, V } . Step detected
14: end if
15: end if
16: end if
17: S = S + [0]
18: return {0, S, V } . No step detected
19: end function

step cannot directly be follow by a next step.

3.2 Mapping the SLAM problem to indoor localisation

With our input defined (the RSSI measurements and motion estimates) we can map the
SLAM problem to the domain of sensor networks and indoor localisation. The robot’s
controls, which are used for pose sampling, are replaced by our motion estimates. The
observations, which are often 2D1 measurements, are replaced by 1D RSSI measurements
similar to the approach of Sun et al. (2009). Using the FastSLAM algorithm (See
Appendix A, Algorithm A.3) as a base, the mapping results in the system described by
Algorithm 3.2 and Figure 3.2.1. In the following subsections each individual component
is described in detail.

3.2.1 Pose sampling

The flow and update rate of the SLAC algorithm is controlled by the pedometer: the
algorithm is run after a new step has been detected. The step size (the distance a
user moves after taking a single step) can be taken as a fixed value or derived from the

1When directional range sensors are used angle information of the observations can be derived.
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Algorithm 3.2 Single step of the SLAC algorithm. Input is the particle set of the
previous step Yt−1, the current motion estimate ut, all RSSI measurements since the
previous step Zt and the number of particles M .

1: function SLAC(Yt−1, ut, Zt,M)
2: Ȳt = Yt = ∅

3: for m = 1 to M do
4: Retrieve {x[m]

t−1, L, w
[m]
t } from Yt−1 . L is a set of landmark EKF’s

5: Sample x
[m]
t ∼ p(xt|x[m]

t−1, ut) . Sample step

6: w
[m]
t = w

[m]
t−1

7: Ȳt = Ȳt + {x[m]
t , L, w

[m]
t }

8: end for

9: for i = 1 to |Zt| do

10: Identify correspondence j . Correspondence is trivial given device IDs
11: Retrieve zit from Zt

12: if j is not initialised then
13: Update initialisation filter for j
14: Compute Σj,t of estimate

15: if Σj,t ≤ threshold then
16: for m = 1 to M do
17: Initialise EKF with µ

[m]
j,t and covariance Σ

[m]
j,t

18: end for
19: end if
20: else
21: for m = 1 to M do . Landmark update step

22: Update mean µ
[m]
j,t and covariance Σ

[m]
j,t

23: w
[m]
t = w

[m]
t f(zit|µ

[m]
j,t , σz) . Importance factor, see Equation 3.2.17

24: end for
25: end if
26: end for

27: Compute N̂eff . Number of effective particles
28: if N̂eff ≤ Nthreshold then . Nthreshold defines global threshold for resampling
29: for m = 1 to M do . Resampling step

30: draw k from Ȳt with probability ∝ w[k]
t

31: Yt = Yt + {x[k]
t , L = {{µ[k]

1,t,Σ
[k]
1,t}, . . . , {µ

[k]
N,t,Σ

[k]
N,t}}, w

[k]
t = 1}

32: end for
33: else
34: Yt = Ȳt
35: end if

36: return Yt
37: end function
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Figure 3.2.1: Visualisation of a single step of the SLAC algorithm. The diagram shows the update
step of a single landmark based on a single observations. In reality, multiple observations and landmarks
can be updated between the sample and resample step.

human’s body height2.
Given the step count3, the prediction of the step size (r) and the current heading (θ)

(taken from the compass) a new pose is sampled for each particle m:

θ̄ = N (θ, σθ) (3.2.1)

r̄ = N (r, σr) (3.2.2)

x
[m]
t = x

[m]
t−1 + [r̄ cos(θ̄), r̄ sin(θ̄)] (3.2.3)

where σθ describes the variance or noise of the compass readings and σr the variance of
the estimated walking distance.

3.2.2 Initialisation using Particle Filters

Given the sampled pose of each particle we can start estimating the locations of each
landmark (i.e. device) individually. As landmark observations are 1D and signals prop-

2Usually a value between 0.3 and 0.5 times the body height is used. The most common values are
0.413 for woman and 0.415 for males.

3In our simulations and live tests, the algorithm runs faster than the average time between steps.
We can therefore compute a whole update after each step which results in a constant step count of one.
However, this is not a requirement and multiple steps can be taken into account but this can lower the
accuracy of the motion sampling.
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agate spherical it is impossible, given a single measurement, to determine the bearing
of an observation. We therefore must first make an initial estimate of a beacon location
before we can refine it using the default method of FastSLAM.

An often used approach to overcome this initialisation problem is to divide the envi-
ronment into a grid and use a voting scheme to find the most probable cell in this grid
(Olson et al., 2006; Sun et al., 2009). Applications of this approach usually focus on
robots (which have better motion modelling) or on relative small environments. For our
indoor localisation we did not want to rasterise the environment so opted for a different
approach using particle filters.

Given a range measurement z with variance σz we know that our landmark is some-
where on a circle with a radius equal to this measurement and a bandwidth proportional
to σz. We can then create a particle filter with N particles which reside on this circle,
with our current estimate of the user’s position as its centre. The distance and angle
(relative to the user) for each particle i ∈ N are defined by:

di = N (z, σz) (3.2.4)

θi =
2πi

N
(3.2.5)

Distance (di) and angle (θi) are then converted to cartesian coordinates.
We now have a particle filter that can roughly estimate the beacon location. After

each new measurement we update our filter by computing the importance weight and
subsequently resampling the filter (using a low variance resampling). A particle’s weight
is updated using the probability density function (f) of the normal distribution:

wi,t = wi,t−1f(z|di,u, σz) (3.2.6)

where di,u is the distance between the user and the particle’s estimate of the landmark
(i.e. the expected measurement). How the particle filter converges to a beacon’s location
is depicted in Figure 3.2.2. When the variance between particles is low enough (given
some threshold), we assume that a beacon’s location has been found.

3.2.3 Refining using Extended Kalman Filters

After the initialisation filter has converged we want to further refine the estimate. Our
initialisation filter is a separate component that uses the current best user estimate as
input. So, to improve on our rough initial estimate we move the estimation from the
global initialisation filter to each individual particle. As it is impractical to update
M ×N particle filters (one particle filter per landmark per particle) we use an EKF to
estimate a landmark’s location (similar to the original FastSLAM implementation).

The state that our EKF tries to estimate is a 2D position vector; i.e. the x and
y coordinates of the landmark. Our observations are however range only and 1D, this
results in a slightly different EKF implementation. Our EKF implementation is based
on the implementation by Sun et al. (2009) who use it in a range-only robot navigation
problem.

To initialise the EKF we use the estimate from the initialisation filter. The initial
covariance matrix of the EKF of a landmark j is defined by the variance of the estimate:

Σ
[m]
j,0 =

[
σ2
x 0

0 σ2
y

]
(3.2.7)
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(a) At start no information is known and the par-
ticle set is empty.

(b) After the user has taken a step, using the last
range measurement, a particle cloud is initialised.

(c) On each step, new range measurements are
incorporated in the filter by updating particle
weights.

(d) As RSSI measurements do not contain an-
gle information, multiple solutions can arise when
walking in straight lines. This can result in mir-
roring problems.

(e) After a user makes a turn, the particle filter
contains enough information to discard one of the
solutions.

(f) Given enough movement, the filter eventually
converges to a good estimate of the landmark lo-
cation.

Figure 3.2.2: Initialisation of landmarks is done using a separate particle filter. Given range mea-
surements and movement of a user the initial position of a landmark is estimated. Note that in these
visualisations user positions are assumed to be known.20
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Given a measurement z we can update the EKF as follows. For each particle m
we start with defining the transition between our state and our expected observation:
this is the Euclidean distance between our estimate of the user and our estimate of the
landmark:

hm(x
[m]
b , y

[m]
b ) =

√
(x

[m]
u,t − x

[m]
b )2 + (y

[m]
t,u − y

[m]
b )2 (3.2.8)

In other words, for any beacon b, the function hm(x
[m]
b , y

[m]
b ) defines the distance

between that beacon and the user estimate [x
[m]
u,t , y

[m]
u,t ]T of particle m where u resembles

the user and t the current time step. As the user estimate is contant, given a particular
particle, only the beacon’s location is a variable in this function.

We then calculate the innovation which resembles the error from our state to the
observation:

v = z − hm (3.2.9)

As the transition from our state to observation is non-linear we have to linearise. We
define the Jacobian by computing the partial derivates of our transition function hm in
both x and y:

H =
∂hm

∂[x
[m]
b y

[m]
b ]

= [
x

[m]
u,t − x

[m]
b

hm
,
y

[m]
u,t − y

[m]
b

hm
]T (3.2.10)

For completeness, the full derivation of hm in x is as follows (the derivation in y is
equivalent):

hm =
√
u where u = dx2 + dy2 (3.2.11)

∂hm
∂dx

=
1

2
√
u

∂u

∂dx
(3.2.12)

=
dx√

dx2 + dy2

=
x

[m]
u,t − x

[m]
b

hm

Based on the Jacobian we calculate the Kalman gain. Note that, due to our static
motion model for the landmarks, the covariance matrix estimate is not updated (i.e.

Σ̄
[m]
b,t = Σ

[m]
b,t ).

σv = HΣ
[m]
b,t H

T +Qt (3.2.13)

K = Σ
[m]
b,t H

Tσ−1
v (3.2.14)

Given the innovation and the Kalman gain we can update our state and covariance.
As our transition model assumes static landmarks we directly update the previous state.
The Kalman gain is used as a weighting mechanism.

[x
[m]
t+1, y

[m]
t+1]T = [x

[m]
t , y

[m]
t ]T +Kv (3.2.15)

21



Human SLAM CHAPTER 3. SLAC

Σ
[m]
t+1 = Σ

[m]
t −KσvKT (3.2.16)

The last step is updating the importance weight of the particle:

w
[m]
t = w

[m]
t−1f(z|hm, σz) (3.2.17)

Updating the previous state and computing the weight completes processing the
measurement. This process is performed for every landmark and for every particle.

3.2.4 Resampling

After each observation is processed all particles have been updated and contain new
importance weights. We can now perform the resampling. However, it does not make
sense to resample after each step; there is just to little information for the resample
process. In order to overcome this we utilise Sequential Importance Resampling (SIR).
After we updated the importance weights and normalised them, we calculate the effective
number of particles (N̂eff). If the effective number of particles drops below a given
threshold we resample.

N̂eff =
1∑N

i=1

(
w

[i]
k

)2 (3.2.18)

When the filter needs to resample we make use of low variance sampling to sample
new particles. This type of sampler only requires a single random number to make
the selection4. The most important advantage of the low variance sampler is its time
complexity: O(M) where M is the amount of particles that needs to be selected. In
comparison, roulette wheel selection has a complexity of O(MlogM)5. The algorithm
for the low variance sampler can be found in Algorithm 3.3.

3.3 Complexity

One of the main requirements of the SLAC algorithm is that it should run online and in
real time. To assess whether this is achievable by the current algorithm we look at the
time complexity of the different components:

Pose sampling
Pose sampling is a fixed process in which we only process incoming motion mea-
surements; this results in a complexity of O(1).

Initialisation filter
The initialisation filter uses Mi particles to update a landmark. Updating a single
particle has complexityO(1). The complexity of the whole filter, for each individual
landmark, is O(Mi).

4In comparison to, for example, roulette wheel selection which chooses a set of random numbers equal
to the amount of particles that needs to be selected.

5M random numbers have to be drawn and for each random number a particle has to be selected
from the list.
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Algorithm 3.3 Low variance sampling. Input consists of the desired number of particles
N , the importance weights W of the current particle set P .

1: function LowVarianceSampler(N,W,P )
2: M = |W |
3: W = normalise(W )

4: r = random()
M . random() returns a uniform random number between 0 and 1

5: c = W0

6: i = 0
7: S = ∅

8: for m = 1 to N do
9: u = r + m−1

M

10: while u > c do
11: i = i+ 1
12: c = c+Wi

13: end while

14: S = S ∪ Pi
15: end for

16: return S
17: end function

EKF update
Each individual two-dimensional EKF is updated using a fixed set of computations
which results in a complexity of O(1).

Low variance sampling
As we described in the previous section, the complexity of the sampler is equal
to O(Ml) where Ml is the number of particles used to represent the user and the
landmarks.

The SLAC algorithm, FastSLAM alike, keeps track of 1+MN filters where M is the
number of particles and N the number of landmarks that has already been initialised.
This bring us to a total complexity of O(MN + Mi). At start M will be zero (no
initialised particles) but will increase when more landmarks are initialised. Subsequently,
Mi will eventually drop to zero if an estimate of all landmarks has been found. The time
complexity of O(MN +Mi) does not include resampling, but this process does not take
place on every step and has therefore a smaller impact.

3.4 Moving landmarks

In real world scenario’s, landmarks (i.e. devices) will, on occasion and some more than
others, move. When a device is slowly moved and is able to continuously broadcast
messages the EKF will slowly adapt to the change in position. While there will be a
expected drop in accuracy the update step of the EKF will eventually find the new
position.
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Unfortunately, devices will generally not move slowly but will abruptly disappear and
appear at a different location; this is the case when a device is plugged out, moved and
then plugged in again. In such a scenario the RSSI signal will be drastically different.

To adapt to these situations we utilise a simple technique: Each landmark signals
that something has changed when it starts up again after a power loss. The SLAC
algorithm detects this message and then reinitialises that particular landmark.

Using the factorised approach, when a landmark is moved, only that single landmark
has to be reinitialised by removing the EKF and restarting the initialisation filter. All
the information of the other landmarks can be retained. This makes adapting to moving
landmarks efficient.

Of course, by acting on a message sent by the device a part of the responsibility
moves from the algorithm to the devices we want to locate. We opted for this choice to
highlight the efficiency and the way the algorithm can react to changes. Detection of
a moving device can also be done as part of the algorithm; for example by evaluating
the change in RSSI signal. These kind of measures are however outside the scope of this
research.
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Chapter 4

Implementation details &
evaluation

In this chapter we explain details regarding the actual implementation of SLAC. Whereas
in the previous chapter we focussed on how the system works, here we constrain us to the
specific implementation used in this project. Second, we explain how this implementation
has been evaluated using both simulations and real world experiments.

Figure 4.0.1: Screenshots of the SLAC application running on both an iOS tablet and an Android
mobile phone.

4.1 Javascript implementation

SLAC has been fully implemented in Javascript and more specifically using the EC-
MAScript version 6/2015 standard. Javascript has been chosen to support a large
range of devices on which the algorithm can run; this includes web browsers and mo-
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bile phones. The Apache Cordova platform1 was used to access native API’s of mobile
devices such as the Bluetooth radio and the motion sensors. This link between native
components and the Javascript implementation is show in Figure 4.1.1.

The implementation of the SLAC algorithm is an event-based system where the
motion data controls the flow. Every time the pedometer detects a new step a single run
of the algorithm is performed. All the RSSI measurements that were recorded between
the last and the current step are used in the update.

Figure 4.1.1: Visualisation of the Javascript implementation. The Cordova API links the native
bluetooth and motion modules (left) to the Javascript components (right). The data flow is left to right:
sensor data flows from the phone, through the API to the particle filter.

Figure 4.0.1 shows an example of the application running on both a tablet and a
mobile phone. Figure 4.1.2 shows an annotated screenshot of the application’s interface.
The full source code is available online2 and is licensed under the GNU Lesser General
Public License so that it can be used and extended in other projects.

To show SLAC in action a recording was made from one of the live runs. In this
run a user walks around inside a room where seven devices were placed in wall sockets.
During the run two devices are disconnected and placed into another wall socket; the
video shows how the algorithm reacts to this change by reinitialising those devices. The
video can be found online at:

https://www.youtube.com/watch?v=00q2QNOFz8U

Additionally to the video, a live demonstration of SLAC running in the browser
(using simulated data) can be found online:

https://wouterbulten.nl/slacjs/

1https://cordova.apache.org/
2https://github.com/wouterbulten/slacjs
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Figure 4.1.2: Screenshot of the SLAC application running on a tablet (with annotations). The sidebar
shows the current motion data (acceleration, heading and step count) and an overview of each device.
Icons on the device overview indicate whether a device has been moved, is new or sent out a new RSSI
update. The right part of the application shows the current state. The green line shows the best
estimated path of the user. All coloured squares show initialisation filters for the devices (each color
represents a single device).

4.2 Simulations

The SLAC system was first evaluated using simulations; this granted the opportunity
to repeat the experiment and control the environment. In the simulation we emulated
the world by building an environment of similar dimensions as one of our real world test
beds. On the same coordinates as in the real world simulated landmarks were placed. See
section 4.3 for a description of this environment. Each landmark broadcasts messages
with a signal strength following the path loss model (with added noise).

In this simulated environment we let a user walk a fixed path and run the SLAC
algorithm on every step. The path is a double loop (with the second part reversed) and
is shown in Figure 4.2.1. We use a fixed step size of 0.5m and always perform 66 steps3.

For the user motion we introduce two scenarios. In the first scenario the algorithm
uses the simulated user movement as a direct input; this resembles a world were we
have perfect motion information. The second scenario adds noise4 to the user movement
before this is used as an input.

The second input, RSSI, is also varied. For the RSSI measurements there are a
total of seven conditions: we vary the number of RSSI updates each landmark broad-

3This number and pattern was chosen to resemble the path that is walked during the live tests.
4Gaussian noise on both the step size and the heading.
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(a) Beginning of the simulation,
only a single landmark has been
initialised.

(b) After more movement and
measurements all but two land-
marks have been found.

(c) Further refining of landmark
estimates is done using separate
EKFs.

Figure 4.2.1: Three screenshots of a SLAC simulation at various stages. The blue line signals the
ground truth of the human movement. Each grey line represents a particle’s estimate of the user path.
The green line is the current best estimate. Black squares are the ground truth of landmark locations,
red blocks represent the current best estimate. Coloured small squares at screen one and two represent
individual initialisation filters.

casts between each consecutive algorithm step. As the signal strength is used to make
range estimates the number of received messages could have an effect on the overall
performance. The different settings are: 1, 2, 5, 10, 25, 50 and 100 updates per step.

In total 14 specific (2 motion × 7 RSSI) settings are tested. Each setting is simulated
500 times.

4.3 Online recordings, offline evaluation

Simulating RSSI values and movement has its drawbacks: noise is predictable and there
is less interference from events in the environment. In general it is hard to fully simulate
all the factors of a real world environment. In order to asses the performance of the
algorithm outside a simulated world, three different locations were used to test the
algorithm in the wild.

While SLAC runs online and in real time the data at these three locations has been
recorded and analysed offline at a later stage. The algorithm did however run during
the data collection to give feedback about the process.

Each recorded data set consists of the raw unprocessed and unfiltered motion data
(i.e. acceleration and heading) and RSSI measurements. Each data point has a times-
tamp which is used to play back that particular measurement at the correct time. These
datasets are played back several times to get an average performance. This is particular
important as the algorithm is a random process: using the same input data twice will
result in different outcomes.

Not all data that has been recorded is used for the evaluation. First, we opted
to only use datasets that have user paths that walk past or close to all landmarks.
Especially in large environments not all landmarks are visible all the time. To be able to
correctly compare environments we only look at runs where each landmark could have
been found5. Second, due to a problem with the data recording some runs also contained

5To stress: We selected datasets were landmarks are visible during the run (e.g. at least a single
RSSI measurement). This does not mean that the algorithm always finds an estimate of its location.
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Table 4.3.1: Description of all runs carried out at the Almende office. The step count gives a rough
indication of the length of each run.

Run ID Description Step count

A 1 Double loop in the center of the room with the second reversed 53
A 2 Double loop in the center of the room with the second reversed 65
A 3 Double loop in the center of the room with the second reversed 61
A 4 Double loop in the center of the room with the second reversed 64

motion data from previous runs; these datasets have also been left out. Datasets were
not discarded for accuracy reasons.

4.3.1 Live tests at Almende

Figure 4.3.1: The top floor at the Almende building was used as one of the testbeds. Seven landmarks
were placed in wall sockets around the room. No furniture or objects were removed before testing. The
room’s dimensions are around 10× 10m.

The first live tests are done at the building of Almende6; see Figure 4.3.1 for a
picture of the environment. Seven beacons were placed in the environment; five of
them in wall sockets and two using extension cords. A user walked around in this
environment following a fixed pattern: looping around the foosball table and back. This
path resembles that path used in the simulations. See Figure 4.2.1 for an overview of
the landmark locations and Table 4.3.1 for an overview of the specific runs.

4.3.2 Rotterdam Community Solutions

A second live test was performed at the company Rotterdam CS 7 who granted us access
to their office. Fourteen beacons were placed around the office floor (a semi-open space
with dimensions around 23×17m). A 3D rendering of the location is displayed in Figure
4.3.2. A description of all the runs that have been recorded are described in Table 4.3.2.

During testing the office was in use and employees walked around. All the land-
marks were placed in wall sockets with two of them in the middle of the room and the
remaining twelve in the outer walls. Most landmarks were placed around work stations
of employees.

6http://www.almende.org
7https://www.rotterdam-cs.com
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Figure 4.3.2: The full office of Rotterdam CS was used as the second testbed.

Table 4.3.2: Description of all runs carried out at the Rotterdam CS office. The step count gives a
rough indication of the length of each run.

Run ID Description Step count

CS 1 Single loop around the center of the office 43
CS 2 Double loop around the center of the office 82
CS 3 Three loops around the center of the office 119
CS 4 Double loop around the center of the office 75
CS 5 Double loop around the center of the office 75
CS 6 Random walk around all nodes 188
CS 7 Three loops around the center of the office 140
CS 8 Double loop, with the second reversed 99

4.3.3 Radboud University

The third and last location of our live tests was the basement of the Faculty of Social
Sciences at the Radboud University. These tests were carried out on a Saturday which
resulted in an almost empty building. Fourteen landmarks were placed in wall sockets
in various corridors of the basement; the total space was around 50× 30m.

The whole basement consists of many small corridors and a lack of (large) open
rooms. This location is therefore mainly used to measure the effect of walls on the
accuracy of the localisation. See Figure 4.3.3 for an example and Figure 4.3.4 for an
overview of the landmark locations.

Table 4.3.3: Description of all runs carried out at the Spinoza building. The step count gives a rough
indication of the length of each run.

Run ID Description Step count

SP 1 Full loop through the environment. 419
SP 2 Full loop. More natural movement (i.e. less straight paths and turns). 372
SP 3 Several loops through the full space 1014
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Figure 4.3.3: The basement of the Faculty of Social Sciences at the Radboud University was used as
a test for larger environments. In total, fourteen landmarks were placed in wall sockets (right picture.

Figure 4.3.4: Ground truth locations of landmarks (black squares) in the Spinoza building. The green
line is an example of the estimated path of the user from one of the test runs.
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Chapter 5

Results

This chapter is separated in two parts: first we describe the results from our simulations
and the specific conditions that have been tested. Second, we show the results from the
three live tests that have been carried out.

5.1 Simulation results

Fourteen distinct simulations have been run where two factors were varied: the movement
noise and the number of RSSI updates per algorithm step. These two factors, and their
effect, are described in the next two sections. Overall, the best result was obtained
in the simulation without movement noise and with 100 RSSI updates per step. This
resulted in an average localisation error of .16m; i.e. the estimation of landmark positions
differend, on average, only 16 centimetres from the ground truth. The same condition,
but with movement noise, resulted in an average error of .46m. Table 5.5.1 contains a
full overview of all the simulation runs.

5.1.1 Effect of movement noise

An ANCOVA was conducted to determine a statistically significant difference between
simulations with and without movement noise on the average localisation error control-
ling for the number of RSSI updates per step. As the average localisation error is not
normally distributed for some of the conditions (see Figure 5.1.1) each value has been
converted using a log10 transition.

There is a significant effect of simulation type on the localisation error after con-
trolling for the number of RSSI updates, F (1, 6997) = 66.804, p < .000 but the effect
size is small (eta2 = 0.065). The average localisation errors for simulations respec-
tively with and without noise are 1.6033 and 1.4503 meters. When correcting for the
number of RSSI updates, simulations with movement noise have on average higher lo-
calisation errors. The effect of number of RSSI updates has a large significant effect
(t(6997) = 6092.416, p < .000, eta2 = .465).

See Figure 5.1.2 for an overview.

5.1.2 Effect of number of RSSI updates

An inverse curve estimation model was used to predict the average localisation error,
given noisy movement measurements, based on the number of RSSI updates per step.
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Figure 5.1.1: Localisation error is not normally distributed for some of the conditions. For high update
rates the localisation error cannot improve anymore which results in a skewed distribution.

A significant regression equation was found (F (1, 3498) = 33868.750, p < .000), with an
R2 of .906. The average localisation error is equal to .431 + 4.390

RSSI meters with RSSI the
number of updates per step.

Likewise, for the perfect movement condition, a second curve estimation model was
used to predict the average localisation error. A significant regression equation was
found (F (1, 3498) = 39472.204, p < .000), with an R2 of .919. The average localisation
error is equal to .175 + 4.772

RSSI meters with RSSI the number of updates per step.

5.1.3 Difference between landmark locations

In the simulations the only difference between landmarks is their location which has
an effect on how close the user is and how often it passes. For each condition (RSSI
updates per step) a repeated-measure-ANOVA was conducted for the simulations with
noisy movement on the average localisation error using landmark position as the within-
subject factor. As the individual localisation errors are not normally distributed for
some of the conditions (see Figure 5.1.1), each value has been converted using a log10

transition.
Mauchly’s Test of Sphericity has been used to detect violations of the sphericity

assumption and the Greenhouse-Geisser correction was applied. See Table 5.1.1 for an
overview.

For each condition there was a significant effect of landmark position on the average
localisation error, see Table 5.1.2. The size of the effect ranged from very large (eta2 > .2)
for conditions with only few RSSI updates to small (eta2 < .1) for conditions with many
RSSI updates. In other words, there is a significant effect of landmark position but this
effect declines with an increasing number of RSSI updates per step.
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Figure 5.1.2: Localisation error (averaged over all landmarks) for simulations with different RSSI
frequencies. The dashed line (top) represents simulations with noisy movement information; the other
has perfect motion data. The decline in localisation error shows the intuitive result that more data
improves the localisation.

Table 5.1.1: Results of Mauchly’s Test of Sphericity and the Greenhouse-Geisser correction that is
applied for each condition for the repeated-measures-ANOVA.

RSSI updates Mauchly’s Test of Sphericity Greenhouse-Geisser correction

1 χ2(20) = 803.424, p = .000 .597
2 χ2(20) = 483.307, p = .000 .746
5 χ2(20) = 154.974, p = .000 .913
10 χ2(20) = 117.418, p = .000 .921
25 χ2(20) = 242.841, p = .000 .843
50 χ2(20) = 245.568, p = .000 .848
100 χ2(20) = 208.164, p = .000 .862

5.2 Live test: Almende

The four live tests at Almende resulted in 2000 data points (500 per test). Of these 2000
runs 108 did not fully initialise all beacons. Based on the step count and the number of
RSSI updates the average number of RSSI updates per step lays between 7 and 10. The
results of the Almende runs will therefore be compared with the 5 and 10 RSSI updates
condition of the noisy simulation. An overview of the individual runs in comparison to
the simulations is shown in Figure 5.2.1.

An independent-samples t-test was conducted to compare the average localisation
error in the live tests with the 5 RSSI updates simulations. There was a significant
difference (t(2498) = −59.527, p = .000) in average localisation error for the live runs
(M = 2.29, sd = .44) and simulations (M = 1.25, sd = .34).

A second independent-samples t-test was conducted to compare the average localisa-
tion error in the live tests with the 10 RSSI updates simulations. There was a significant
difference (t(2498) = −78.524, p = .000) in average localisation error for the live runs
(M = 2.29, sd = .44) and simulations (M = .69, sd = .25).

Combined we can state that there is a significant difference between simulations and
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Figure 5.1.3: Localisation error (separated per landmark) for simulations with different RSSI frequen-
cies. Only the data from the noisy movement simulations has been used for this figure.

real life tests ranging between 1.04 and 1.6m.

5.3 Live test: Rotterdam CS

None of the runs of the Rotterdam CS tests managed to initialise all beacons. Averaged
over all runs, 53.4% of beacons were not initialised but this is highly dependent on the
specific run.

We do have to note that we evaluated all landmarks even though not all of them are
close to the paths of the users in the runs. In Figure 5.3.2 the pattern of the missing
data is shown together with a bar plot of the frequency that a specific landmark was not
initialised. The differences are clear: some landmarks are almost never initialised where

Table 5.1.2: Results of each repeated-measure-ANOVA conducted on the simulations with noisy move-
ment using landmark position as the within-subject factor.

RSSI updates Effect Partial eta2

1 F (3.584, 1369.246) = 386.167 p = .000 .503
2 F (4.473, 2227.97) = 1152.524 p = .000 .698
5 F (5.475, 2227.97) = 198.102 p = .000 .284
10 F (5.529, 2758.900) = 33.274 p = .000 .063
25 F (5.060, 2525.068) = 27.325 p = .000 .052
50 F (5.087, 2538.630) = 34.545 p = .000 .065
100 F (5.170, 2580.006) = 34.544 p = .000 .065
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Figure 5.2.1: Showing the average localisation error of the four Almende runs (first four) in comparison
to the simulations (last two).

for others an estimate is almost always found.
In Figure 5.3.2 the performance of each individual run in shown. As the number of

initialised landmarks differs from run to run the results should be viewed given that fact
in mind.

5.4 Live test Spinoza

Out of the 1500 cases of the Spinoza test only 1 did not manage to fully initialise all
landmarks. The performance of each individual run in shown in Figure 5.4.1.

The run using more natural walking patterns (“SP 2”) has the lowest accuracy. It
is however not clear whether this is caused by the walking pattern or other influences.
Moreover, this run has also the lowest step count (and with that fewer iterations of the
algorithm) which could also account for the lower accuracy.

5.5 Overview of results

Table 5.5.1 shows an overview of the localisation errors (i.e. the performance) of the
simulations in comparison to the live tests carried out in the Almende building. Table
5.5.2 shows the results of all the tests at the Rotterdam CS building. In these tests a
large part part of the landmarks did not initialise, and therefore did not have a position
estimate, this table also shows the percentage of landmarks that did have an estimate.
The last table, Table 5.5.3, shows the results of all the runs done at the Spinoza building.
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Figure 5.3.1: Showing missing data in the Rotterdam CS dataset. The left figure shows specific data
patterns, each filled square indicates that an estimate of that landmark is missing. The bar plot on the
right shows the percentage of time a specific landmark was not initialised.

Figure 5.3.2: Showing the average localisation error of the Rotterdam CS runs. Note that these
localisation errors are only based on the initialised landmarks. In the Rotterdam CS tests many of the
landmarks did not initialise before the end of the test.
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Figure 5.4.1: Showing the average localisation error of the Spinoza runs. The error is based on all
landmarks as these were in 99.93% of the cases all initialised.

Table 5.5.1: Overview of the simulation runs and the corresponding live tests (at the Almende building).
For each run the average localisation error is reported. The ‘complete’ column of the table describes the
percentage of runs that succeeded in initialising all landmarks (i.e. completing the initialisation part
and continuing with the EKF).

Run

Average local-
isation error
(m)

Standard devi-
ation of error
(m)

Complete (%)

Sim. 1 RSSI update 4.51 .51 .86
Sim. 2 RSSI updates 3.48 .42 100
Sim. 5 RSSI updates 1.17 .23 100
Sim. 10 RSSI updates .44 .10 100
Sim. 25 RSSI updates .22 .06 100
Sim. 50 RSSI updates .17 .04 100
Sim. 100 RSSI updates .16 .04 100
Sim. with noise, 1 RSSI update 4.49 .57 75
Sim. with noise, 2 RSSI updates 3.35 .54 99
Sim. with noise, 5 RSSI updates 1.25 .34 100
Sim. with noise, 10 RSSI updates .69 .25 100
Sim. with noise, 25 RSSI updates .50 .20 100
Sim. with noise, 50 RSSI updates .48 .18 100
Sim. with noise, 100 RSSI updates .46 .19 100
Almende 1 2.10 .31 95
Almende 2 2.20 .30 100
Almende 3 2.84 .36 92
Almende 4 2.04 .25 100
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Table 5.5.2: Overview of all the runs at the Rotterdam CS building. For each run the average
localisation error is reported. At these live tests many of the landmarks did not initialise (e.g. an
estimate was not yet found within the time frame of the test). Therefore the average amount of beacons
that was initialised (averaged over all runs for that particular test) is reported in the last column.

Run
Average localisation
error (m)

Standard deviation
of error (m)

Beacons initialised
(%)

Rotterdam CS 1 7.41 .39 3
Rotterdam CS 2 8.50 .69 35
Rotterdam CS 3 7.54 .68 54
Rotterdam CS 4 10.11 .95 40
Rotterdam CS 5 8.81 .76 48
Rotterdam CS 6 8.64 .52 85
Rotterdam CS 7 8.69 .50 55
Rotterdam CS 8 10.14 1.19 53

Table 5.5.3: Overview of all the runs at the Spinoza building. For each run the average localisation
error is reported. The last column shows the percentage of runs that succeeded in finding an estimate
for all beacons.

Run
Average localisation
error (m)

Standard deviation
of error (m)

Complete (%)

Spinoza 1 9.14 1.09 100
Spinoza 2 12.48 1.02 100
Spinoza 3 8.64 .72 100
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Chapter 6

Discussion

In this thesis we set out to explore the possibility of designing a fully autonomous self-
localisation system for a network of devices by utilising the users of the space that the
network is deployed in. Our main goal was to perform this localisation without any prior
information about the network.

We have shown, through simulations, that within controlled environments (i.e. Gaus-
sian noise, fixed paths of users, no obstacles), we can achieve an average localisation error
below .20m. This means that, after running the algorithm, the estimate of a device’s
location will, on average, only be 20 centimeters away from its actual position. The
only input that is used are signal strength measurements from the devices and motion
data from a user. No information about the structure of the room or the position of the
device was used.

When movement noise was introduced in these simulations, i.e. there is no ground
truth movement information available, the performance drops slightly but is still accu-
rate: on average a localisation error below .5m is achieved.

These simulations show the maximum attainable performance; they were conducted
in controlled environments using Gaussian noise and a high update frequency of the
devices. When the update frequency of devices is lowered, to a level similar to our live
tests, the average localisation error increased and resulted in an average error of .69 to
1.25m.

After simulations the algorithm was live tested in a real world environment with the
same number of devices and of equal dimensions. Our test environment was, however,
not a clear open space as our simulation environment was but contained many sources of
noise, including objects, walls and people walking around. This was deliberate as these
noisy environments are exactly the target platform for this technique. All combined, our
live tests showed a localisation error of 2.3m, averaged over all devices. This result is
good enough for room level accuracy, but there is room for improvement. These results
where achieved by letting a single user walk around for one to two minutes (roughly 60
steps).

Additionally two other locations were used as test beds. These locations were larger,
contained other users and consisted of multiple rooms. The localisation errors of devices
in these environments were larger than in our other test (with an average localisation
error over 8m). Also, more devices did not finish the initialisation phase before the end
of the test run. These errors are too large to achieve room level accuracy which suggests
that for larger spaces we need to take additional measures.
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6.1 Evaluation of requirements

Besides performance, we started this research with three qualitative measures or re-
quirements: the localisation should be online, privacy must be assured and no prior
information should be used.

The SLAC system is a fully online method. SLAC runs online and gives instan-
taneous estimates of device and users positions in contrast to offline methods which only
give these estimates after processing all data. This characteristic is the result of the
SLAM approach and the use of Rao-Blackwellized filters; only the last state is required
to predict a new state.

All computations are local and sharing is possible. The whole algorithm runs
locally on a user’s device without communicating with the devices it tries to locate. The
only input, from sources outside the user’s own device, are RSSI measurements. These
measurements are one-way communications.

We have to note that by using a wireless device inside a building a user can still be
tracked by external measures. This is however even the case without running the SLAC
algorithm. It is key that for the localisation itself no external communication is required.
Moreover, the current setup makes it easy to share device estimations without sharing
a user’s path (we will go deeper in to this subject in section 6.4).

No anchors, additional hardware or other information is required. The only
information the SLAC algorithm needs is an estimate of the step size of the user (although
a general average could be used for this) and the signal strength of devices at a 1 meter
distance. This last value is often part of the wireless protocol and part of the broadcast
message. In other words, the localisation can take place without prior information.

6.2 Factors influencing performance

The localisation error depends on many factors, of which some could be tested in our
simulated environment. We also found (large) differences between different test beds
and individual runs. The most intuitive factor is probably the length of our tests.
Especially in the large environments many devices were not initialised due to a shortage
in measurements. The following factors can explain these differences:

More RSSI updates increases performances. We found, using controlled simula-
tions, that the number of RSSI updates per algorithm step has a very high effect on the
performance of the system. This follows directly from our system: given more informa-
tion the Kalman filter responsible for filtering the raw RSSI signal will be able to give
a less noisy estimate of the current distance to a beacon. These distance estimates are
vital in updating landmark positions and weighing particles.

While the effect of the number of RSSI updates is high, this effect eventually wears
out. Given enough measurements the noise will eventually be filtered out and more
measurements will not improve the distance estimate.

The two factors in the simulations, motion noise and number of RSSI updates, also
show an interesting interaction: The movement noise only seems to influence perfor-
mance when the number of RSSI updates is high. When the update frequency of devices
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is low the noise in the filtered distance measurements becomes so high that the movement
noise does not add any noticable error.

The best performing simulations used high update frequencies (ranging from 25 to
100 updates per algorithm step). In our real world tests we only received, on average,
seven to ten updates per step1. This suggests that increasing the update rate can improve
performance in real world scenarios.

Devices’ positions influence performance Within the simulations the only differ-
ence between devices were their positions and followed from that the relative path of the
user. For the initialisation and updating the estimate it is important that a user passes
a device from different angles. All other factors were controlled, e.g. the path of the
user was constant, RSSI values followed the same function and there were no obstacles.
Given this, we found significant differences between localisation errors of landmarks.
Especially when the number of RSSI updates is low, the size of this effect is large.

These results indicate that we, in live tests, can expect differences in performance
for individual devices and that the path of the user influences this.

Path loss model does not account for obstructions. In our simulated world
Gaussian noise was added to RSSI values to simulate real world noise. All the live test
environments contained objects, walls and humans who walked around. Each of these
add a factor of unpredictable noise to the RSSI measurements.

Our live tests at the Almende building took place inside a single room; i.e. all devices
were in the same room as the test. In our other test sites, for example the Spinoza
building, the devices were spread out over a large floor with many walls between them.
The path loss model that was used to translate RSSI to distance does not account for
walls while, in real life, the actual RSSI value is influenced by them.

Motion modelling is inaccurate. In our simulations motion noise was modelled by
adding noise to the ground truth. In the live tests this noise is, however, less nicely
distributed and more dependent on environmental factors. Compass data for example,
that is used to measure the current heading, can be influenced by nearby metal or
magnetic objects. In robotics this mismatch between simulation and real world is also
called the reality gap (Jakobi et al., 1995). Moreover, where the simulated user had a
fixed step size, real users will vary their step size continuously; this adds an additional
error to the estimate of the travelled distance. A large part of these errors are filtered
out by the particle filter but it does not result in the very accurate modelling found in
the simulations.

Short traces are enough for small dense environments; large environments
need longer traces. While this result is intuitive it is still important to report: larger
environments need more data for good estimates of devices locations. At our first live
test a location estimate was found for all devices, in our second live test there was a
large portion of devices whose estimate could not be found. The third test, which also
was a larger environment but had longer traces, did however result in estimates for all
devices. This indicates that for large environments, especially when device density is
low, a longer trace is needed to get an initial estimate of a device’s location.

1This was partially caused by limitations in our Javascript implementation.
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The question how long these traces have to be remains. Unfortunately this is very
dependent on the specific environment and, even more important, the location of the
devices in this environment. To find an initial estimate of a device’s position a user must
pass a device from multiple angles (see Figure 3.2.2 for an explanation of this) and this
depends on the path user takes; i.e. the time a device needs to initialise varies from
device to device.

Noisy measurements result in mirroring errors. The distance estimates of de-
vices is noisy, especially given obstacles present in the environment. However, a com-
bination of the filters in the algorithm should be able to overcome this. There does,
however, exist a situation where the estimated distance can be perfect but the localisa-
tion error very high: a mirrored position estimate. Such a mirroring error occurs when
a device is initialised on a position mirrored to its actual position. We found that these
errors are difficult to overcome within the small timeframes of our live tests.

6.3 Comparison to existing techniques

Most of the literature regarding the localisation of devices inside buildings focus solely
on the devices themselves. Likewise, many of the algorithms focussing on users do not
locate devices. It is therefore hard to make a fair comparison between SLAC and existing
techniques. Nonetheless, we can give a broad overview of the localisation errors of the
techniques we discussed previously in Section 2.

Focussing on users first, there are many methods to perform the localisation (see
Section 2.2.2). WiFi-SLAM, using GP-LVM methods, by Ferris et al. (2007) achieve a
localisation error, without labeled training data, of 3.97m. The method using environ-
ment fingerprints as used by Yang et al. (2012) achieve a localisation error (for users) of
5.88m. A offline SLAM approach, using GraphSLAM, by Huang et al. (2011) achieve a
localisation error of 2.18m. Most of these errors are averaged over the whole user path
or calculated using specific points in the space2.

The work of Sun et al. (2009) is, regarding implementation, closely related to the
current research. Using robots their average localisation error for real world tests is
around 1.3m. This localisation error is however the error of the robot’s path estimate
and not of the landmark locations.

For locating devices most research focusses on using robots or on networks localising
itself (see Section 2.2.1). Hollinger and Djugash (2008) and Hollinger et al. (2011), who
use GP-LVM to simultaneously locate users and devices, achieve an average localisation
error of around 4m for devices without using any odometry data (which makes the
localisation harder). However, they do use ranging radios which results in better distance
estimates. Using odometry data and EKF-SLAM a localisation error of around 3.3m
was found.

One of the best results is achieved by Menegatti et al. (2010) who report an average
localisation error in their experiments of 0.46m; a camera and robot odometry is used to
improve their results. A second good example is the work of Torres-González et al. (2014)
who achieve a localisation error of around 0.2m using Sparse Extended Information

2An often used method to compute the accuracy of a trace is to see how the algorithm performs if
the users is in a location for the second time. In a perfect system the two position estimates should be
the same, the difference between the two estimates is often taken as the error.
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Filters and robots. These very low errors are partially the result of incorporating inter-
device measurements (i.e. distance estimates between devices).

Given our simulation and live test results, the SLAC algorithm sits in terms of
performance around the center of existing techniques. We are not able to get the very
accurate estimates as techniques using offline methods or accurate odometry data. This
is a direct result of online-characteristic of SLAC; in terms of localisation accuracy, it
will never be able to outperform offline methods as the full trace is not used.

Also, as particle filters are used, only the current position of the user is updated. All
previous locations of users (which are part of the trace of a particle) remain unchanged
in the update step. The only change in previous positions is caused by resampling,
but this can only select a different trace as the best one and does not change actual
estimated positions. By only updating the current estimation a large performance boost
is achieved. If, however, the focus is to find the best user path a different method (which
also updates previous positions) could be better suited.

Nevertheless, we are still able to get good estimates (average of 2.3m), enough for
room level accuracy, without using any prior information such as anchors. Only our live
tests at larger environments stand out but these lower results are primarily caused by
too short test runs.

6.4 Improving performance with map fusing

The SLAC system, as proposed in this thesis, runs completely on a user’s device. This
has the practical side effect of being privacy friendly. Nonetheless, we also concluded that
short traces are insufficient for finding good estimates, especially in larger environments.
This effect will be even greater when the target environment is a full sized building.
Moreover, not every user will walk around the whole building. In such cases it will be
very difficult to get good estimates by using a single user3.

We can remedy this by combining data from multiple users: the process of map
fusing. With map fusing we attempt to combine individual user’s maps into a single
global consistent map. See Figure 6.4.1 for an overview. Individual errors, such as
mirroring errors, can potentially be removed using these kinds of methods.

A important drawback of map fusing is that information between users has to be
shared. Fortunately, given the factorised approach of the algorithm, the full trace is not
required for map fusing. To perform map fusing we need to be able to align individual
maps of users. The individual landmark estimates are independent of each other and of
the user’s path if we can ‘ground’ the trace to some global frame.

Because the pedometer and our path loss model give real world distances we only
need to rotate maps and find the starting position of the user to align them. In other
words, a user’s initial position, which can for example be an entrance to a building,
and the individual EKFs (for each landmark) are enough to perform the map fusing. It
would however still be a challenge to find a correct estimate of a user’s initial position.

Map fusing offers an interesting follow-up research to the SLAC algorithm. Especially
because it makes it possible to distribute the mapping of environment to multiple users.
Moreover, by fusing individual EKF’s the localisation error of devices can be decreased.
Due to the factorised approach we do not need to share the full path of the user to make
this possible; this assures that the privacy of users can be guaranteed.

3Assuming we do not want to force a single user to walk around the whole building for a longer period
of time.
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Figure 6.4.1: Overview of the idea of map fusing. Three different users (top, red dots) walk around
(dashed lines) a building but their individual runs only result in a partial estimate of the environment
(each device is depicted as a grey dot). By fusing these three estimates together a more complete map
of the environment can be created (bottom).

6.5 Conclusion

To conclude, with SLAC we translated the simultaneous localisation and mapping prob-
lem to indoor localisation of smart spaces. Our focus did not solely lie on locating users
but also on locating (smart) devices.

The traditional SLAM approach was adapted to use 1D signal strength measurements
as input. These signal strengths are part of (almost) all wireless technologies used
within smart spaces, and can therefore be considered a ‘free’ input. A motion model,
using accelerometer and compass data as input, was used to make estimations of user
movement. The full algorithm runs online, with the full update function computed in
real time and does not require historical data to run.

Live tests, in non-trivial environments, showed that room level accuracy is indeed
possible and that localisation of devices can be done very fast. This is all done locally,
i.e. running on users’ devices, with respect for user privacy and without using prior
information of the environment.

More work is required to increase accuracy in large environments and to make the
algorithm more robust for environment noise caused by walls and other objects. Existing
techniques could alleviate these problems, e.g. by implementing map fusing and letting
users work together.
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Marie Chan, Daniel Estève, Christophe Escriba, and Eric Campo. A review of smart
homes- present state and future challenges. Computer methods and programs in
biomedicine, 91(1):55–81, July 2008.

Moonok Choi, Wan-ki Park, and Ilwoo Lee. Smart Office Energy Management Sys-
tem Using Bluetooth Low Energy Based Beacons and a Mobile App. In Consumer
Electronics (ICCE), 2015 IEEE International Conference on, pages 501–502, 2015.

Po-Jen Chuang and Cheng-Pei Wu. An Effective PSO-Based Node Localization Scheme
for Wireless Sensor Networks. In 2008 Ninth International Conference on Parallel and
Distributed Computing, Applications and Technologies, pages 187–194. Ieee, 2008.

Pontus Ekberg and Edith C.-H. Ngai. A distributed Swarm-Intelligent Localization for
sensor networks with mobile nodes. In 2011 7th International Wireless Communica-
tions and Mobile Computing Conference, pages 83–88. Ieee, July 2011.

Brian Ferris, Dieter Fox, and ND Lawrence. WiFi-SLAM Using Gaussian Process Latent
Variable Models. In IJCAI, pages 2480–2485, 2007.

van Lex Gijssel and Andries Stam. ProHeal, Automated Protection and Healing Soft-
ware Solutions, Project Outline Annex. Technical report, Information Technology for
European Advancement (ITEA2), 2014.

GPy-authors. GPy: A gaussian process framework in python. http://github.com/

SheffieldML/GPy, 2012–2014.

DM Dae-Man Han and JH Jae-Hyun Lim. Design and implementation of smart home
energy management systems based on zigbee. IEEE Transactions on Consumer Elec-
tronics, 56(3):1417–1425, August 2010.

46

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy


Human SLAM BIBLIOGRAPHY

Guangjie Han, Huihui Xu, TQ Duong, Jinfang Jiang, and Takahiro Hara. Localization
algorithms of wireless sensor networks: a survey. Telecommunication Systems, 52(4):
2419–2436, 2013.

Geoffrey A Hollinger and Joseph A Djugash. Tracking a Moving Target in Cluttered
Environments with Ranging Radios. In Robotics and Automation, 2008. ICRA 2008.
IEEE International Conference on, pages 1430–1435, 2008.

Geoffrey a. Hollinger, Joseph Djugash, and Sanjiv Singh. Target tracking without line
of sight using range from radio. Autonomous Robots, 32(1):1–14, July 2011.

Lingxuan Hu and David Evans. Localization for mobile sensor networks. In Proceedings
of the 10th annual international conference on Mobile computing and networking -
MobiCom ’04, pages 45–57, New York, New York, USA, 2004. ACM Press.

Joseph Huang, David Millman, Morgan Quigley, David Stavens, Sebastian Thrun, and
Alok Aggarwal. Efficient, generalized indoor WiFi GraphSLAM. In Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pages 1038–1043. Ieee,
May 2011.

Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and the reality gap: The use
of simulation in evolutionary robotics. In Advances in artificial life, pages 704–720.
Springer, 1995.
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Appendix A

Particle Filters and FastSLAM

The SLAC system proposed in thesis builds upon FastSLAM (Montemerlo et al., 2002).
In this appendix chapter we will explain the general idea behind FastSLAM. To do this
we must first explain two other techniques which are essential components of FastSLAM:
particle filters and the (extended) Kalman filter (EKF). Notation wise we follow mainly
the definition as described by Thrun, Burgard, and Fox (2005).

A.1 (Extended) Kalman filter

The Kalman filter is a state estimator that makes an estimate of some unobserved
variable based on noisy measurements. It is a recursive algorithm as it takes the history of
measurements into account. Applied to localisation, we want to predict the new position
after some motion command (the control) and new measurements of the environment.
The Kalman filter assumes that the transition and observation model are linear:

xt = Atxt−1 +Btut + εt (A.1.1)

zt = Ctxt + δt (A.1.2)

In these questions x resembles the estimate of our state and z a new measurement.
At describes what happens to our position estimate regardless of the control. In many
cases this is a identity matrix if the object of which we estimate the position does not
move. On the other hand, a drone would have a transition model that incorporates
influences of wind. Bt describes how a specific control u changes the state from t − 1
to t. εt describes Gaussian process noise with covariance Rt. Ct describes the mapping
from a state to an observation which definition depends on the context.

These two linear models can be incorporated in the definition of the multivariate
normal distribution1. We then have the probability of a position given the control and
the previous estimate:

p(xt|xt−1, ut) = det(2πRt)
− 1

2 (A.1.3)

exp
(
− 1

2
(xt −Atxt−1 −Btut)TR−1

t (xt −Atxt−1 −Btut)
)

1p(x) = det(2πΣ)−
1
2 exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
with µ the mean and Σ the covariance matrix.
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Here Atxt−1 +Btut describes the mean of the distribution (as it is the estimated new
position given our model) and Rt the covariance matrix. The probability of a certain
measurement is then described by:

p(zt|xt) = det(2πQt)
− 1

2 exp
(
− 1

2
(zt − Ctxt)TQ−1

t (zt − Ctxt)
)

(A.1.4)

with Ctxt the mean and Qt the covariance.
The Kalman filter computes a weighted average between the prediction and the

observation based on the certainty of these two. The resulting belief wil lie closest to
the input distribution with the highest certainty.

The belief of the prediction (i.e. our state estimate without incorporating the mea-
surement), bel, is based on the previous belief and the control:

bel(xt) =

∫
p(xt|xt−1, ut) bel(xt−1) dxt−1 (A.1.5)

The final belief of our state is based on the predicted belief and the measurement:

bel(xt) = η p(zt|xt) bel(xt) (A.1.6)

See Thrun et al. (2005, chap. 3.2.4) for a mathematical derivation of these equations.

A.1.1 Non-linear functions

The transition and observation model we described earlier are linear models. Unfortu-
nately, many real world situations are not linear. Consider for example the translation
of a position to a distance measurement, this is a non-linear transformation. To counter
this we can replace our linear transformations with non-linear functions:

xt = g(xt−1, ut) + εt (A.1.7)

zt = h(xt) + δt (A.1.8)

These non-linear functions do however leed to non-Gaussian distributions. The Ex-
tended Kalman Filter addresses this by linearising the non-linear functions at the mean
of the input distribution. This linearisation is an approximation but offers fairly good
performance if the values are not far from the linearisation point; i.e. the higher the
uncertainty of the Gaussian the higher the error.

The linearisation is performed through the use of first order Taylor expansion. Using
the linearisation our new probability distributions for the postion and the measurements
then become:

p(xt|ut, xt−1) ≈det(2πRt)
− 1

2 exp
(
− 1

2
(xt − g(ut, µt−1)−Gt(xt−1 − µt−1)T (A.1.9)

R−1
t (g(ut, µt−1 −Gt(xt−1 − µt−1)

)

p(zt|xt) = det(2πQt)
− 1

2 exp
(
− 1

2
(zt − h(µ̄t)−Ht(xt − µ̄t))T (A.1.10)

Q−1
t (zt − h(µ̄t)−Ht(xt − µ̄t))

)
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A.1.2 Updating the EKF

To perform state estimation the extended Kalman filter continuously updates its belief
of the system when new measurements and controls come in. This is done through
the Kalman update, as shown in Algorithm A.1. The algorithm shows the update for
the EKF but is, without the linearisation, very similar to the update function of the
regular Kalman filter. The Kalman gain (Kt) is used as the weighing factor: the larger
the Kalman gain, the more we ‘distrust’ our current estimate and the larger the actual
update of the estimate will be.

Algorithm A.1 Extended Kalman filter algorithm. The filter tries to estimate some
state modelled through µ. An update is performed given a new control u and measure-
ment z.

1: function EKF(µt−1,Σt−1, ut, zt)

2: µ̄t = g(µt−1, ut)
3: Σ̄t = GtΣt−1G

T
t +Rt

4: Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)

−1

5: µt = µ̄t +Kt(zt − h(µ̄t))
6: Σt = (I −KtHt)Σ̄t

7: return µt,Σt

8: end function

A.2 Particle Filters

Particle filters are a type of non-parametric filters to approximate a posterior distribu-
tion. They are sometimes also called as Sequential Monte Carlo methods. Particle filters
can be seen as a probabilistic implementation of Darwin’s Survival of the Fittest and are
a type of genetic algorithms. Here we describe shortly the general idea of particle filters
and their inner workings.

The basis of a particle filter is a set of particles. Each particle represents, at a given
time t, a concrete possible state of the concept that is being modelled. A single particle
can be seen as a hypothesis about the world at a given moment in time. More formally,
each particle is a sample of the posterior distribution. The amount of particles is often
large and fixed but, in some cases, can also be a function of some other parameter.

In robotics and indoor localisation, each particle is often a sample of the distribution
of the current expected location of a robot or person. Each particle represents a valid
location and the total particle space describes the range of the estimate. In the remainder
of this section we will use the term ‘robot’ to describe the actor in the particle filter.

A.2.1 Basic algorithm

The particle filter is a recursive algorithm: it computes its new posterior estimate based
on the previous state (χt−1) and some additional input. This additional input consist of
the robot’s control (ut) and its sensor measurements (zt). This combination is crucial;
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the control describes where the robot should go, the sensor readings describe roughly
whether this action has succeeded.

Algorithm A.2 Particle Filter algorithm. Input is the particle set χ, the control u, the
measurement z and the desired number of particles M .

1: function ParticleFilter(χt−1, ut, zt,M)
2: χ̄t = χt = ∅

3: for m = 1 to M do . Sampling step

4: Retrieve x
[m]
t−1 from χt−1

5: Sample x
[m]
t ∼ p(xt|ut, x[m]

t−1)

6: w
[m]
t = p(zt|x[m]

t ) . Importance factor

7: χ̄t = {χt + 〈x[m]
t , w

[m]
t }

8: end for

9: for m = 1 to M do . Resampling step

10: Draw i with probability ∝ w[i]
t

11: χt = χt + x
[i]
t

12: end for

13: return χt
14: end function

The most basic version of the particle filter algorithm consists of two important
steps: the sampling and resampling step. The algorithm is displayed in Algorithm A.2.
The algorithm starts by generating M new samples as part of the sampling step. These

samples are drawn from a distribution based on the previous particle x
[m]
t−1 and the robot’s

control ut where m denotes the current particle. For each new sample an importance
factor is calculated (line 5). This importance factor is the probability of the measurement
zt given the new sample. This factor gives an indication of how good the sample can
explain the sensor reading. The general idea is that a good sample will match the sensor
reading better.

After the sampling step we end with a list of M particles and an importance factor
per particle. In the resampling step (line 8) we draw particles from this temporary set
(χ̄t), with replacement, and proportional to the probability defined by the importance
factor; i.e. particles with a good estimate have a higher probability of ending up in
the new particle set. When the resampling step is complete we end up with a new set
of particles (with possible duplicates) that describes the new estimate of the robot’s
position.

A.2.2 Design considerations

There are a few properties of particle filters that have to be taken in to account as these
can degrade the performance of the filter (Thrun et al., 2005). We highlight some of
these here shortly and describe how these could affect localisation.

Density extraction: The estimate of the robot’s position is a continuous distribution
over the state space. However, we only describe this estimate with a finite amount
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of particles. So our belief of the location is a discrete approximation. Multiple
methods exist to overcome this problem. For localisation a easy method is just
averaging the particles; this is particularly useful if there is limited processing
power available.

Sampling variance: As we take finite random samples from a probability distribution
this introduces errors. This variability is called the sample variance. The sample
variance can be minimised by increasing the amount of particles at the expense of
increasing complexity.

Loss of diversity: The resample step favours particles with a high importance factor
and these can be selected multiple times (due to the replacement). This has as a
result that the diversity of particles can drop as the algorithm progresses. While
the variance between particles will also drop, the variance between the particles
and the true belief can increase due to this. This loss of diversity can be addressed
by different sampling methods.

Particle deprivation: When there are no particles near the correct state we speak of
the particle deprivation problem. This problem occurs most often when the amount
of particles is small and is a result of the random sampling. A specific series of
random draws can result in particle deprivation. However, the larger the amount
of particles the less likely this is to occur.

A.3 FastSLAM

As stated before, FastSLAM is a particle filter implementation of SLAM. Initially, Fast-
SLAM is defined to solve the full SLAM problem: given all the sensor readings and
robot controls (from 1 : t), what is the full path and map of the environment? The map
is represented by a set of landmarks. These landmarks can be anything; in the case of
indoor localisation they are often devices.

The full SLAM problem introduces a conditional independence that the FastSLAM
algorithm utilises, using Rao-Blackwellised Particle filters, to increase performance: given
the robot path, the location of the landmarks are independent of each other and can be
estimated separately. See also Figure A.3.1 for a visual explanation. In order to do this
we factorise the full SLAM posterior2:

p(x0:t,m1:M |z1:t, u1:t) = path posterior×map posterior

= p(x0:t|z1:t, u1:t) p(m1:M |x0:t, z1:t, u1:t) (A.3.1)

= p(x0:t|z1:t, u1:t) p(m1:M |x0:t, z1:t) (A.3.2)

= p(x0:t|z1:t, u1:t)

M∏
i=1

p(mi|x0:t, z1:t) (A.3.3)

Here x0:t describes the robot’s path, m1:M the landmarks, z1:t the sensor measurements
and u1:t the controls. Note that we omitted the controls u1:t in the estimation of the map

2This definition differs slightly from the one in Thrun et al. (2005). Here we assume that there is no
data association problem so the correspondence is not part of the posterior.
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Figure A.3.1: Bayesian network representation of the FastSLAM algorithm. Grey nodes are observed
variables, white nodes are latent. Given the robot path there is no other path between landmarks; i.e.
given the path the landmark locations are independent.

(Equation A.3.2); given the robot’s path the location of the landmarks are independent
of the controls.

By factorising we transformed a highly dimensional problem into two separate prob-
lems: estimating the path and the landmarks. FastSLAM uses a particle filter to estimate
the robot path. The mapping problem, which is easily computable given the robots path,
is factored in separate problems; one for each landmark. The individual landmark loca-
tions can be estimated using a low-dimensional EKF. This is in contrast to other SLAM
methods who usually have a joint estimate of all landmarks.

Even though we make an estimate about the whole path of the robot in Equation
A.3.3, we will see that FastSLAM can also be used for online SLAM : instead of estimat-
ing the whole path we only want estimate the current position. This is made possible
due to the definition of the particle filter: the estimate is only dependent on the previous
estimate and the whole path is not required.

A.3.1 Algorithm in more detail

The basic FastSLAM algorithm (Montemerlo et al., 2002) is closely related to the particle
filter algorithm. As can be seen in Algorithm A.3, the two main steps of the particle
filter are present: the sampling and resampling step. In the sampling step particles are
updated based on the robot’s control. In the resampling step new particles are drawn
with replacement from the generated particle set (Ȳt).

The main addition in comparison to the particle filter algorithm is the addition of an
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Algorithm A.3 FastSLAM algorithm. Input is the particle set Y , the control u, the
set of measurements Z and the desired number of particles M .

1: function FastSLAM(Yt−1, ut, Zt,M)
2: Ȳt = Yt = ∅

3: for m = 1 to M do
4: Retrieve a pose x

[m]
t−1 from particle set Yt−1

5: Sample x
[m]
t ∼ p(xt|x[m]

t−1, ut) . Sample step

6: for i = 1 to |Zt| do . Landmark update step
7: Identify correspondance j
8: if j is new then

9: Initialise µ
[m]
j,t and covariance Σ

[k]
j,t given zit.

10: else
11: Update mean µ

[m]
j,t and covariance Σ

[k]
j,t given zit.

12: end if
13: end for

14: Calculate importance weight w[m]

15: Ȳt = Ȳt + {x[m]
t , w

[m]
t , landmarks} . Including unobserved landmarks

16: end for

17: for m = 1 to M do . Resampling step

18: draw i with probability ∝ w[k]
t

19: Yt = Yt + {x[k]
t , landmarks}

20: end for

21: return Yt
22: end function

additional step in which the estimates of the observed landmarks (i.e. the devices) are
updated. This is necessarily for a robot to generate a map. First we need to correspond
the observation zit to a specific landmark (i.e. the data association problem). When this
link is established we can update our estimate of that landmarks position. Finding the
correspondence is trivial when data association is known; e.g. with uniquely identifiable
landmarks.

Note that the landmarks and the robot pose are separate and not part of a combined
state space; i.e. we do not sample over the robot poses and the landmarks combined.
This is the most important aspect of the FastSLAM algorithm. As we explained before,
by factorising the problem we can minimise the amount of particles that are needed due
to each particle representing a smaller dimension.

At time t, a single particle in the FastSLAM algorithm can be described as:

Y
[m]
t =

〈
x

[m]
t , 〈µ[m]

1,t ,Σ
[m]
1,t 〉, . . . , 〈µ

[m]
N,t,Σ

[m]
N,t〉
〉

(A.3.4)

with m ∈ M describing the particle index, M the total amount of particles and N

the amount of landmarks. x
[m]
t describes the estimated robot position in 3 dimensions
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(x, y, θ). Each µ
[m]
j,t ,Σ

[m]
j,t are the mean and variance of a Gaussian describing the estimate

of a single landmark l with j ∈ N .
Calculating the posterior at time t boils down to generating a new particle set Yt

from the previous one Yt−1. For this we execute the three main steps of the FastSLAM
algorithm (the steps refer to Algorithm A.3):

Sample (or prediction) step: Using the robot control ut a new pose is sampled ac-
cording to the motion model:

x
[m]
t ∼ p(xt|x[m]

t−1, ut) (A.3.5)

The new pose is always computed using the previous estimate from the same

particle, x
[m]
t−1.

Landmark update step: For each observed landmark we must update the estimate

and therefore update the mean µ
[m]
j,t−1 and covariance Σ

[m]
j,t−1 using the EKF update

function. If a landmark is not observed the estimated position remains unchanged.
When a new (previous unseen) landmark is observed we initialise the EKF with
the current measurement.

Resampling (or correction) step: In the resampling step we draw (with replace-
ment) a new set of particles with probabilities proportional to the importance
weights. This resampling is required as the measurements are not embedded in
the distribution sampled in the sample step. From the sample step, we obtain a dis-
tribution given only our motion model. This is not equal to our target distribution
which favours positions based on the measurements. By sampling particles based
on the weight, which is based on the measurements, we correct for this mismatch.
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Random variables and
distributions

Consider a simple example such as rolling a fair dice d1: there are six distinct outcomes
and each outcome has an equal probability (namely 1

6). We define this set of outcomes
as Ω; this is a discrete distribution. Discrete distributions can only have a finite (which
is clearly the case in our example) or a countable infinite number of values.

Now we add a second dice, d2, and we want to reason about the sum of the two
dices: e.g. what is the probability of an even value? Note that we are now not interested
anymore in the individual outcomes but in events. The outcome (n1 = 1, n2 = 3) is in
our model the same event as (n1 = 1, n2 = 1) as the sum is even in both cases.

For this we need a mapping from the set of outcomes to a different variable we wish
to model. We can define a measurable function, X, that describes this relation, which
is called a random (or stochastic) variable. Formally, a random variable can be defined
as a function

X : Ω→ R (B.0.1)

in which Ω is the set of possible outcomes. Note that R could also be replaced by a
different type of set (but is often R). The application of this to our dice example is
simple:

X(n1, n2) =

{
1 if (n1 + n2) mod 2 = 0

0 otherwise
(B.0.2)

We map all the different outcomes (different values of n1 and n2) to numerical values.
Note that each individual dice role can also be described by a random variable which
simply uses the value of the dice.

B.1 Types of distributions

In our single-dice problem the probabilities of each event was trivial as all were equal.
The two-dice situation has a different probability distribution since not every event has
the same likelihood. In the next sections we will describe how we can define these
distributions.
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B.1.1 Discrete probability distributions

In the case of a discrete random variable we can define a probability distribution P that
maps events (subsets of outcomes) to some value:

P (Ω) := {A ⊆ Ω} → R (B.1.1)

with Ω beging the set of possible outcomes. For discrete random variables this distri-
bution is called a probability mass function and is usually described as (for a random
variable X):

fX(x) = P (X = x) = P ({ω ∈ Ω | X(ω) = x}) (B.1.2)

=
∑

X(ω)=x

P (ω)

which states that we compute the probability of all the outcomes (ω ∈ Ω) that result in
the given event x. The distribution has the following characteristics:

P (Ω) = 1 (B.1.3)

∀A ⊆ Ω, P (A) ≥ 0 (B.1.4)

A ∩B = ∅ ⇒ P (A ∪B) = P (A) + P (B) (B.1.5)

which can be explained as: all the possible outcomes lay in Ω, all probabilities are
non-negative and outcomes which are independent can be simply added. This last char-
acteristic is, possibly, the least intuitive but can be explained with a simple example:
Consider our two dice example. As individual throws are independent we can simply
say: P (even) = P (2) + P (4) + P (6) + P (8) + P (12).

The expected value or mean of a discrete random variable can easily be defined as:

E[X] =
n∑
i=1

xifX(xi) (B.1.6)

B.1.2 Continous probability distributions

When Ω is a continuous set, the probabilities are not assigned to values but to intervals.
Namely, as the space of values is infinite the probability of a single value is practically
zero. To compute the probability of an interval, an integral can be used over the range
of that particular interval. So, given a probability distribution function fX(x), the
probability that an outcome x lays within an interval [a, b] can be defined as:

P (a ≤ x ≤ b) =

∫ b

a
fX(x)dx (B.1.7)

with the following characteristics:

∀x ∈ R, fX(x) ≥ 0 (B.1.8)∫ ∞
−∞

fX(x)dx = 1 (B.1.9)

A ∩B = ∅ ⇒ P (A ∪B) = P (A) + P (B) (B.1.10)
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where A and B can be seen as two non-overlapping intervals. Note that these charac-
teristics are analogous to those of discrete random variables. If fX(x) : R → R then
fX is called a probability density function (pdf) of X. The expected value or mean of a
continuous probability distribution can be computed with:

E[X] =

∫ ∞
−∞

xfX(x) dx (B.1.11)

B.1.3 Gaussian distribution

A special variant of the continuous probability distribution is the gaussian distribution
(or normal distribution). For a variable X to be gaussian distributed, its probability
density function is defined by:

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (B.1.12)

with µ the mean and σ describing the standard deviation of the distribution. The
constant 1

σ
√

2π
assures that the area under the curve is equal to one. When µ is 0 and σ

is 1 we speak of a standard normal distribution.

B.1.4 Joint probability distributions

Until this point we only considered univariate distributions; i.e. a probability distribution
of only one random variable or a random variable that combines multiple variables in
to one (as with the example of predicting an even result from two dice). When we
have more than one random variable, the distribution becomes a multivariate or joint
probability distribution. Such a set of random variables is usually called a random vector.

B.2 Stochastic (or random) process

Apart from looking at individual random variables, we can also investigate series. A
random (or stochastic) process is, in its most simple definition, a collection of random
variables. It models the development of a system in which the transfer between states
is non-deterministic (therefore ‘random’) and can be defined as:

{Xt | t ∈ T} (B.2.1)

with T being an ordered set, T ⊆ [0,∞), which in most cases represents time or space1

and each Xt begin a random variable. We can use a random process to model some
system that changes through time in a non-predictable way. This is in contrast to a
deterministic system in which the steps are known given knowledge about the initial
state. An example of a random process is the stock price of a company observed over
time.

A random process can be continuous or discrete; e.g. when time is used, the process
can be continuous (it can take any value within the time interval) or discrete (days,
minutes, hours, etc.). Regardless of the type of the process, the random variables the
process consists of can also be continuous or discrete; i.e. a continuous processes can
consist of discrete variables and vice versa. A random process can have many different

1For convenience we will, in these descriptions, describe T as time.
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outcomes, defined by its random factors. Each outcome is a function of time and is
called a sample function (or possibly more intuitive: a sample path).

To say something about the state of a random process at a specific point in time t
we can calculate the mean of the random process. The mean is a function of time:

µX(t) = E[X(t)] (B.2.2)

In other words: the mean of a process X at time t is the expected value of the random
variable at that specific point in time.

B.2.1 Simple example: plant growth

Consider modelling the growth of a simple plant after 10 days (i.e. a discrete interval
of [0, 10]). Lets say that at t0 our plant has a height of 1cm and, in our toy world, the
daily growth is described by a random variable G from a uniform distribution U [1, 3]2.
We can define a random process with:

{Xt | t ∈ [0, 1, . . . , 10]} (B.2.3)

Xt = 1 +Gt (B.2.4)

From this follows automatically that X0 = 1. The randomness of our process is
defined by G, so for every g ∈ U [1, 3] we obtain a sample function for Xt in the form
of: f(t) = 1 + gt. Using the definition of the probability density function of an uniform
distribution3 we can define the function of our random variable G:

fG(x) =

{
1

3−1 if 1 ≤ x ≤ 3

0 otherwise
(B.2.5)

Using the pdf we calculate the expected height of our plant at t10:

E[Xt] = 1 + E[Gt] (B.2.6)

E[X10] = 1 + E[10G] (B.2.7)

= 1 + 10E[G]

= 1 + 10

∫ 3

1
gfG(g) dg

= 1 + 10

∫ 3

1

1

2
g dg

= 1 + 10[
1

4
g2]31

= 1 + 10[2.25− 0.25]

= 21

2Clearly, this is not a good model of real plant growth.

3The pdf of a uniform distribution U [a, b] is defined as pdf(x) =


1
b−a if a ≤ x ≤ b

0 otherwise
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Figure B.2.1: Visualisation of the plant growth model. The great coloured area models all possible
heights at a given time. The center line gives the expected value at each day given the uniform growth
distribution.

B.3 Relations between variables

Using the mean of a random process we can express something about the state of the
process at a specific time or space. However, we cannot say anything about the relation
between two points, e.g. X1 and X2. For this we can define the correlation (ρ) and
covariance (cov) between two variables with:

ρ(X1, X2) =
E[(X1 − µ1)(X2 − µ2)]

σ1σ2
(B.3.1)

=
E[(X1 − E[X1])(X2 − E[X2])]

σ1σ2

cov(X1, X2) = E[(X1 − E[X1])(X2 − E[X2]) (B.3.2)

( = E[X1X2]− E[X1]E[X2], alternate form)

The covariance function is an important property of a special form of random pro-
ceses, namely Gaussian processes. We will explain these processes in a later section. In
many cases, including Gaussian processes, we are interested in the covariance between
one variable and all others. For this we introduce a new notation for covariances: the
covariance matrix, Σ. The covariance matrix is defined as an n×n matrix with elements:

Σij = cov(Xi, Xj) (B.3.3)
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Gaussian Processes

A random process, a collection of random variables, is said to be a Gaussian process
(GP)1 if any finite number of these variables have a joint Gaussian distribution; i.e. the
relation between variables follows a Gaussian distribution, this says something about
the smoothness of functions generated by these processes.

As we will shift to more complex situations (and input data) we will switch notations
from from Xt to a more general f(x) in which x is the input vector. Mathematically, a
Gaussian process f is defined by its mean (m) and covariance function (the kernel, k),
covariance functions are valid mercer kernels:

f ∼ GP(m(x), k(xi,xj)) (C.0.1)

This states that f is distributed as a gaussian process. Here m and k are functions, in
contrast to single values (univariate) or vectors and matrices (multivariate) with Gaus-
sian distributions. So, a GP can be seen as a generalisation of a gaussian distribution on
a random vector. A GP is a non-parametric model as the parameters of the model (the
values of the mean and covariance function) are not known beforehand and are derived
from data.

A multivariate Gaussian distribution is defined on a random vector. Each element
in the vector denotes a random variable; i.e. the variables are indexed by their position.
For a GP there is no such index. Instead, we have x which is used to indicate the random
variables. For each xi there is a random variable f(xi) which is the value of the GP f
at that location.

The mean and covariance functions are described as (analogous to B.2.2 and B.3.2):

m(x) = E[f(x)] (= 0, often used for simplicity) (C.0.2)

cov(xi,xj) = k(xi,xj) = E[(f(xi)− µ(xi))(f(xj)− µ(xj))] (C.0.3)

For simplicity, the mean function m(x) is usually taken to be zero, e.g. m(x) = 0
where 0 is a zero-vector. This usually does not limit the model as predictions do not
have to have a zero-mean. A zero mean function can be a characteristic of the data
or achieved by preprocessing. The covariance is an important aspect of GPs: a GP

1We follow here the definitions as described by Rasmussen and Williams (2006); Rasmussen (2006);
Barber (2012).

63



Human SLAM APPENDIX C. GAUSSIAN PROCESSES

requires that the covariance between two function values (f(xi), f(xj)) depends on the
covariance of the input values (xi,xj):

cov(f(xi), f(xj)) = k(xi,xj) (C.0.4)

Here k is the kernel function, we will explain in Section C.3 how to choose this
function.

C.1 Noisy processes

In many real-world examples, the function values are not known directly due to noise.
This can be the result of measurement noise but can also be a characteristic of the system
or caused by external factors (such as noise in wireless signals). So instead of observing
f(x) we observe:

yi = f(xi) + ε (C.1.1)

where each xi is an input sample (from Rd, with d the dimension) and yi the target
or observation. ε models the noise and describing the noise variance. This noise also
changes the definition of the GP:

f ∼ GP(m(x), k(xi,xj)) (C.1.2)

cov(yi, yj) = k(xi,xj) + σ2
nδij (C.1.3)

y ∼ GP(m(x), k(xi,xj) + σ2
nδij) (C.1.4)

here δij is the Kronecker’s delta (1 iff i = j). So, for identical points (i = j), the
covariance function is defined by the signal covariance and the noise covariance. This
only applies to identical points as the noise is assumed to be independent.

C.2 Prediction using Gaussian processes

Here we consider regression (as opposed to classification) on noisy data. Given training
data D consisting of n input-output pairs (xi, yi) with xi ∈ Rd and yi ∈ R, we define
the whole training data as D = {X,y} with X the matrix of input values and y the
observations. X has dimensions n×d and y is a vector of n×1. We define the covariance
matrix on y with

Σ(y) = K(X,X) + σ2
nI (C.2.1)

where I is the identity matrix and K the kernel on the input values. In other words,
the covariance matrix is an n× n matrix with values as defined in Equation C.1.3. For
notational simplicity we will use Σ to describe the matrix (as opposed to Σ(y)). Using
our covariance matrix we can describe our process as:

p(y|X) ∼ N (y|0,Σ) (C.2.2)

Now we introduce a new data point (x∗, y∗) where x∗ is observed and we want to
predict f∗ (short for f(x∗)). Note that we here focus on the function value instead of a
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(a) GP before optimisation (b) GP after optimisation

(c) GP before optimisation (d) GP after optimisation

Figure C.1.1: Application of a zero-mean, squared-exponential kernel GP on a random dataset (blue
plusses) generated using y = 2 sin( 1

2
x) + ε (figures a, b) and y = 1

4
x2 + ε (figures c, d) where ε ∼ N (0, 1).

The dark line shows the posterior mean (sampled using very small intervals), the green area the posterior
variance. In (a) and (c) no optimisation of the hyperparameters has been performed, its clearly visible
that, although the model follows roughly the structure of the underlying function, it captures to much
of the noise in the data. In (b) and (d) the parameters have been optimised, resulting in a better model
of the mean and variance. Figures have been generated using the Python pyGPs package.

noisy observation; using our data consisting of noisy observations we aim to predict the
clean signal given some new input x∗. We can write a joint distribution on our train
data and the new point:

p(y, f∗|X,x∗) ∼ N (y, f∗|0,Σ+) (C.2.3)

Σ+ =

[
K(X,X) + σ2

nI K(X,x∗)
K(x∗,X) K(x∗x∗)

]
(C.2.4)

where Σ+ is the extended covariance matrix, K(x∗,X) = K(X,x∗)
T and 0 a zero-vector

with length n+1. Note that for a non-noisy process the term σ2
nI can be simply omitted.

We are however interested in the conditional probability of f∗ given the data. For this
we must convert the joint distribution (C.2.4) to by conditioning it using the theorem:

p(x,y) ∼ N
(

a,b

∣∣∣∣[ A C
CT B

])
=⇒

p(x|y) ∼ N (a + CB−1(y − b), A− CB−1CT ) (C.2.5)

We can now compute the predictive distribution for f∗ given Equations C.2.3 and C.2.5:
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p(f∗|x∗, D) = p(f∗|x∗,X,y) ∼ N (f∗|mD, kD)) (C.2.6)

mD = K(x∗,X)[K(X,X) + σ2
nI]−1y, (C.2.7)

kD = K(x∗,x∗)−K(x∗,X)[K(X,X) + σ2
nI]−1K(X,x∗) (C.2.8)

The covariance kD depends not on the observed targets (y) but only on the prior vari-
ance (K(x∗,x∗)) subtracted by a positive term that is dependent on the training data;
i.e. the training data lowers the variance as it gives us information about the process.
Even though we have used a zero-mean function for the GP, the mean of the posterior
is not necessarily zero (due to the definition of mD). Note that we followed Equation
C.2.5 and that our joint probability (Equation C.2.3) has a zero mean. Predicting a set
of points can be done by replacing f∗ by a vector f∗.

C.3 Training a Gaussian process

As we saw a GP is defined by its mean and covariance function and, in the case of a
noisy process, also the noise variance. The process of training a GP consists of defining
these functions based on the training data using two steps:

1. Model selection: choosing the functional form of the mean and covariance func-
tions.

2. Adapting hyperparameters: optimising the parameters of the functions given
the training data.

C.3.1 Model selection

In GP’s we have to define two priors on the model: the mean and covariance functions.
The mean function is usually defined as a zero-vector. The choice of the covariance
function is however of great importance as it defines the interaction between consecutive
datapoints. An often used covariance function is the Gaussian or squared-exponential
kernel which, in its most simple form, can be defined as:

k(xi, xj) = exp(−|xi − xj |2) (C.3.1)

However, most of the time extra parameters are added to tune the kernel:

k(xi, xj) = σ2
f exp

(
− 1

2l2
|xi − xj |2

)
(C.3.2)

with the variance given by σ2
f and the length scale of the correlation strength is given

by l. These two parameters control the smoothness of the functions generated by the
Gaussian process. The squared-exponential kenel is a stationary covariance function as
the kernel only depends on the distance between the inputs.
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C.3.2 Hyperparameter optimisation

The covariance functions usually have one or more hyperparameters; e.g. the squared-
exponential kernel discussed before has two (σ2

f and l). These parameters are called
hyperparameters as they are parameters of a non-parametric model. Using training
data these hyperparameters can be optimised.

This training can be performed by computing the probability of the data given the
hyperparameters θ using the log marginal likelihood (or sometimes called the evidence):

log p(y|X, θ) = −1

2
yTΣ−1y − 1

2
log det(Σ)− n

2
log 2π (C.3.3)

Note that we assume a zero mean GP in above definition of the likelihood. By maximising
the marginal likelihood we can find the most optimal hyperparameters given the data;
Figure C.1.1 shows an example of the effect of the hyperparameter optimisation.
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Appendix D

Localisation using Gaussian
Process Latent Variable Models

At the start of this indoor localisation research we evaluated several techniques. A
promising technique is that of Ferris, Fox, and Lawrence (2007) who proposed WiFi-
SLAM: an algorithm which uses Gaussian Process Latent Variable Models (GP-LVM)
for indoor localisation of users by creating a mapping between RSSI measurements and
locations. This technique has a few important merits:

1. No motion data or other user-specific information is required. This removes the
need for sensors measuring user motion.

2. The only input data consists of RSSI measurements from different points in time
measured at the user’s location. This requires that a users carries a device that
can measure RSSI.

3. No site surveys or other environment information is required beforehand.

4. No model mapping RSSI to distance is need. The algorithm works directly on the
raw RSSI data.

We evaluated the GP-LVM approach using a pilot study as, besides the points above,
it shows promising results in terms of performance. In this chapter we will briefly describe
the workings of GP-LVM and how it can be applied to indoor localisation. Furthermore,
we will explain some of the changes we considered to improve performance. We conclude
with the results from our pilot which consisted of a small simulated experiment to show
the application of the technique. Eventually we chose not to use the method as the
merits did not outweigh the drawbacks: The GP-LVM approach is an offline method
and the work by Ferris et al. (2007) focussed only on locating users. Extending the
method to also support locating devices (such as the work by Hollinger et al. (2011))
requires additional input and sensors.

For understanding of GP-LVM a basic understanding of probability distributions and
Gaussian Processes is a necessity; a short tutorial on this can be found in appendices B
and C.

The reader that is primarily interested in the results of our pilot, and the rationale
behind not choosing the GP-LVM method, can skip the explanation of the GP-LVM
technique and continue to sections D.3 and D.4.
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D.1 Gaussian Process Latent Variable Models (GP-LVM)

Gaussian processes can be used for supervised learning. Using labeled data (i.e. the
values of our input X are known) we can predict new unseen data points. In GP-LVM
we are not interested in predicting new data points but more in finding structures in
the data; a form of unsupervised learning. The general assumption is that some high
dimensional observed data, Z, may be represented or originate from a lower embedded
(or unobserved) space, X, and that we are interested in modelling this lower dimensional
space.

Models that utilise this approach are called latent variable models (LVM). In general,
a latent variable model relates a set of observed variables, Z ∈ RN×d, to a set of latent
(or hidden) variables, X ∈ RN×q, using a set of parameters W ∈ Rd×q (with d, q
denoting the amount of features in the two spaces, d > q and N the amount of samples)
(Lawrence, 2004, 2005). Examples of latent variables are psychological traits such as
extraversion or conscientiousness; these cannot be directly measured but can be inferred
using measurable variables. Another example, applicable here, are physical locations (in
a 3D space) with a mapping to observed signal strength measurements. A simple linear
LVM will assume the following relationship:

zi = Wxi + ε (D.1.1)

with ε modelling noise of the observed variable. LVM’s assume that, when controlled
for the latent variable, the observed variables are independent of each other. In general
(regardless of linearity) the relation can be defined as through a parameterised function1:

zij = f(xi,wj) + ε (D.1.2)

with zij being a singular observation, i ∈ [0, N) and j ∈ [0, d).

D.1.1 Probabilistic principal component analysis

A well known dimensionality reduction algorithm is principle component analysis (PCA)
which tries to find a set of principle components (which size is smaller than the amount of
features) that captures the most variance of the data. More precisely, the first principle
component accounts for the largest amount of variance in the data, and each succeeding
one for the highest variance given that it is orthogonal to the preceding components.
The largest drawback of this method is that we cannot write down a likelihood of the
data given the model. The absence of a probabilistic model is addressed in an extension
of PCA: Probabilistic principal component analysis (PPCA) (Tipping and Bishop, 1999).

D.1.2 Non-linear LVM

The LVM is defined probabilistic and the latent variables can be marginalised out of the
model. For the marginalisation we require a prior distribution on the latent variables X,
usually a standard normal distribution is chosen for this. The parameters W can then
be found by maximising the likelihood with respect to W (like the parameters in the
optimisation of general GP’s). See Lawrence (2005) for an overview of this approach.

1Note that the parameterised function is equal to Equation C.1.1 from Appendix C, but here the
parameters of the model are explicit (through wj).
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When the mapping from a point z in Z to a point in X is linear and z has a
Gaussian distribution, then the mean and covariance function can be computed easily;
if not, approximation is required.

However, in many cases the mapping from the observed to the latent space is non-
linear. Due to this non-linear mapping we lose the prior on the latent space and can
no longer marginalise X. I.e. the real challenge is to propagate the prior probability
distribution through the non-linear mapping.

Gaussian process latent variable models (GP-LVM) (Lawrence, 2004) can be seen as
a non-linear probabilistic extension of PCA and address this by treating W as latent
variables instead of maximising their likelihood. It is however intractable to marginalise
both W and X (in terms of computational complexity). Thus, without resorting to
approximation, we need to choose one of these sets to marginalise. In GP-LVM the
parameters are marginalised and the latent variables (X) are optimised.

To view the parameters as latent variables we define them as random variables and
define a prior:

p(wij) = N (wij |0, 1) (D.1.3)

p(W) =
∏
ij

p(wij) (D.1.4)

It has been shown that given this Gaussian prior, maximising the likelihood with
respect to the latent variables X still leads to principle component analysis. The
marginalised likelihood then becomes:

p(Z|X, ε) =
∏
j

p(zj |X, ε) (D.1.5)

p(zj |X, ε) = N (yj |0,XXT + σ2
nI) (D.1.6)

p(Z|X, ε) =
∏
j

N (yj |0,XXT + σ2
nI) (D.1.7)

Note that here zj is a vector as we marginalised the parameters. By maximising the
likelihood we can determine the values of X that have the highest likelihood given our
observations Z.

Although we assumed the parameters to be latent, the covariance function in Equa-
tion D.1.7 is still a linear function (namely in the form of the covariance matrix XXT +
σ2
nI). When we replace this function by a function that allows non-linearity we obtain a

non-linear LVM. These non-linear LVM’s are however more difficult to optimise; gradient
based optimisation methods are often used for this.

D.2 GP-LVM for localisation

Now that we’ve briefly introduced the GP-LVM we can utilise this method for the
localisation of users in a building. Given a space with n wireless devices. Each device
i has a position vector si ∈ <d with d = 2 for 2D environments. All positions of these
devices can be combined in a position matrix S ∈ <n×d. The location of a user traversing
through the space at time t can be described with ut ∈ <d. The aggregated matrix of
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the user’s movement pattern is U ∈ <m×d with m denoting the amount of observations.
Both S and U are latent variables and are independent of each other (i.e. given the
measurements the position of a user does not influence the position of a device and vice
versa).

At time t the user receives signal strength measurements of all nodes within range,
described by yti ∈ < for a node i. We assume devices broadcast a unique id or can
be otherwise identified. Our observation matrix is then Y ∈ <m×n. The relationship
between the signal strength and the positions can be described using a parameterised
function:

yti = f(si,ut, w) + ε (D.2.1)

Noise is modelled by ε and the parameters are made explicit through w. This function
implies a probabilistic relation between the signal strength, the location of a device and
the current location of the user:

p(yti|si,ut, w) (D.2.2)

As Y is dependent on S and U the likelihood of our model becomes:

p(S,U,Y) = p(Y|S,U)p(S)p(U) (D.2.3)

However, using this model it can be difficult to derive the location matrices S and
U as we have two latent variables. Therefore we combine S and U into a single latent
variable Xm×n+1 where each xi,j ∈ <d represents the location of a device or human j at
tilmestep i. Our model then reduces to:

p(X,Y) = p(Y|X)p(X) (D.2.4)

D.2.1 Dynamics model

We constrain our latent space X by extending the GP-LVM with a dynamics model
(Wang et al., 2006). We utilise a similar approach as Ferris et al. (2007) but extend this
to account for the devices; we model this through a hyperparameter βi which is 1 if i is
a device and zero otherwise. The dynamics are modelled by the product of independent
constraints:

p(X) = p(distance)p(orientation) (D.2.5)

We constrain the walking speed of users and constrain the locations of devices to
zero using an Gaussian prior:

p(distance) =

m−2∏
t=0

n∏
i=0

{
N (dist|0, σnode) βi = 1

N (dist|∆tµv,∆tσv) otherwise
(D.2.6)

dist =||xi,t+1 − xi,t|| (D.2.7)

Here µv and σv are the parameters of the walking speed model, ∆t the time difference
between the two measurements and σnode noise regarding the locations of the devices.
Devices are constraint to zero-movement.
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Figure D.2.1: Multi-modal distribution on the orientation between steps. In our model we favour
straight paths and turns.

A restriction on orientation between two consecutive points is modelled by a multi-
modal distribution (Figure D.2.1). Where Ferris et al. use a zero-mean Gaussian we
argue that this model is to simple. We do however assume that users of the building will
generally walk in straight lines and that directional changes can be roughly modelled by
90◦ turns.

p(orientation) =
m−2∏
t=1

n∏
i=0

{
1 βi = 1∑Ω

ω wN (θi,t|ω, σ) otherwise
(D.2.8)

Here θi,t is the orientation between two points (t− 1 and t+ 1) on the path of the user,
Ω = {−90, 0, 90} and w = 1

|Ω| . The orientation constraint is only applied to the trace of
the user, not to the devices as these have fixed positions.

D.2.2 Local distance preservation

We constrained our model so that similar locations have similar signal strengths; this
is assured by the characteristics of the GP-LVM. The other way around, similar signal
strengths mean similar locations, is also valid if the density of devices is high. Only with
a high density we can assume that signal strength fingerprints will be roughly unique.
If node density is low other measures need to be used (Huang et al., 2011). In our WSN
setup we assume that the node density is high and therefore our model can benefit from
this constraint.

GP-LVM focusses on dissimilarity preserving: points that are distant in the obser-
vation (or data) space Y will be distant in the latent space X. Our signal strength to
location constraint is however a local distance preservation: similar signal strength sig-
natures (i.e. close in the observation space) should map to locations that are close. Note
that this local distance preservation is not applicable to all data sets; here we have a
well defined latent space which is suitable for these constraints.

Local distance preservation is not a standard characteristic of GP-LVM. To ensure
a smooth mapping from signal strength to locations we can utilise the LL-GPLVM
(Urtasun et al., 2007) which builds upon Locally Linear Embedding (Roweis and Saul,
2000) or back-constrained GP-LVM (Lawrence and Quiñonero Candela, 2006). Because
our latent space is strictly defined (<2 or <3) the back-constrained GP-LVM is the most
applicable.
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D.3 Simulations of user-only localisation

As part of our pilot a small experiment was conducted to test how well the GP-LVM
localisation performs. For this we constrained our self to to a version closely related
to the WiFi-SLAM approach. In a simulated world devices were placed at random
locations. A simulated user walked a pre-defined path and recorded RSSI measurements
from the devices. The ground truth of the path and the device locations can be seen in
FigureD.3.1.

After the recording both PCA and GP-LVM were used to estimate the user’s path
from the RSSI measurements. The GPy (GPy-authors, 2012–2014) library was used to
perform the computations. Different noise levels were implemented to test the perfor-
mance of the system given measurement noise.

These first results showed that, given only RSSI measurements as input, the GP-
LVM method is able to deduce the user’s path. Noise does however have a large effect
on the performance. The results are shown in Figure D.3.2.
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Figure D.3.1: Ground truth of the user’s walk pattern (blue lines) and device locations (red dots).

D.4 Problems with GP-LVM localisation

Our simulation showed that GP-LVM is applicable to indoor localisation of users. We
however also focus on the localisation of the devices; something the base WiFi-SLAM
approach of Ferris et al. (2007) did not address. Our model, in which we incorporated
device locations as part of the latent space, is however not able to solve our problem.
The problems with the GP-LVM approach are as follows:

Dimensionality: Our representation of our latent space (i.e. the path of the user and
the locations of devices), as defined in the previous section, contains a significant
flaw: We cannot perform dimensionality reduction when our latent space is bigger
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Figure D.3.2: Result of the pilot study. Showing the estimated user path for both the basic PCA
algorithm and GP-LVM. When the noise level is increased the localisation error increases drastically.
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than our observed space. Our latent space has a dimension of M ×N + 1 given N
devices and 1 user. The observed space has only a dimension of M ×N .

To address this issue we, if we want to apply GP-LVM, will have to introduce
additional input to our system to increase the dimensionality of our observation
space. This contrasts, however, with our goal to reduce the required additional
hardware and prior information.

Offline: The GP-LVM method is an offline method as it uses the full user trace to
perform localisation. This is not necessarily a problem for locating devices; their
location will change less often than users. For users this is problematic, localisation
should start when someone enters a building and this location information should
be available instantly. When there is a delay a smart space system cannot react
in real time on users’ presence.

We weighed the benefits of the GP-LVM method with the problems described above.
Eventually we favoured a different approach (the FastSLAM method) and decided to
not use GP-LVM as the base of our algorithm.
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